Skip to main content

Manothermosonication for Microbial Inactivation

  • Chapter
  • First Online:
Book cover Ultrasound Technologies for Food and Bioprocessing

Part of the book series: Food Engineering Series ((FSES))

Abstract

Ultrasound is one of the new technologies of microbial inactivation that has been suggested as an alternative to heat treatments. Despite the improvement of current ultrasound generators some data indicate that the germ-killing efficacy of the process is relatively low under atmospheric pressure and room temperature. Therefore most investigators have tried to improve the efficacy of the process, either by increasing cavitation intensity or by designing combined processes to enhance the lethal effect. This chapter reviews the accumulated knowledge in the last 15 years concerning the microbial lethal efficacy of ultrasonic waves under pressure at room temperatures (manosonication, MS) as well as at mild temperatures (manothermosonication, MTS). The chapter focuses on the microbial MS/MTS resistance and inactivation kinetics, on the effect of physical parameters on the lethality of the treatment and on its control. The mechanisms of action and the possibilities to design combined processes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderton, G., Thompson, P. A., and Snell, N. (1964). Heat adaptation and ion exchange in Bacillus megatherium spores. Science, 143, 141–143.

    Article  CAS  Google Scholar 

  • Alliger, H. (1975). Ultrasonic disruption. American Laboratory, 10, 75–85.

    Google Scholar 

  • Allison, D. G., D’Emanuele, A., Egington, P., and Williams, A. R. (1996). The effect of ultrasound on Escherichia coli viability. Journal of Basic Microbiology, 36, 3–11.

    Article  CAS  Google Scholar 

  • Alpas, H., Kalchayanand, N., Bozoglu, F., and Ray, B. (2000). Interactions of high hydrostatic pressure, pressurization temperature and pH on death and injury of pressure-resistant and pressure-sensitive strains of foodborne pathogens. International Journal of Food Microbiology, 60, 33–42.

    Article  Google Scholar 

  • Álvarez, I. (2000). Resistencia al calor y a los ultrasonidos bajo presión de S. enteritidis y S. senftenberg en medios de distinta actividad de agua. Master’s thesis, University of Zaragoza.

    Google Scholar 

  • Álvarez, I., Raso, J., Palop, A., and Sala, F. J. (2000). Influence of different factors on the inactivation of Salmonella senftenberg by pulsed electric fields. International Journal of Food Microbiology, 55, 143–146.

    Article  Google Scholar 

  • Álvarez, I., Condón, S., and Raso, J. (2007). Microbial inactivation by pulsed electric fields. In: Raso, J., and Heinz, V. (eds.), Pulsed Electric Field Technology for the Food Industry, pp. 95–128. New York, NY, Springer Applied Science.

    Google Scholar 

  • Álvarez, I., Mañas, P., Condón, S., and Raso, J. (2003a). Resistance variation of Salmonella enterica serovars to pulsed electric fields treatments. Journal of Food Science, 68, 2316–2320.

    Article  Google Scholar 

  • Álvarez, I., Mañas, P., Sala, F. J., and Condón, S. (2003b). Inactivation of Salmonella enteritidis by ultrasonic waves under pressure at different water activities. Applied and Environmental Microbiology, 69(1), 668–672.

    Article  CAS  Google Scholar 

  • Álvarez, I., Mañas, P., Virto, R., and Condón, S. (2006a). Inactivation of Salmonella senftenberg 775 W by ultrasonic waves under pressure at different water activities International Journal of Food Microbiology, 108, 218–225.

    Article  Google Scholar 

  • Álvarez, I., Niemira, B. A., Fan, X. T., and Sommers, C. H. (2006b). Inactivation of Salmonella serovars in liquid whole egg by heat following irradiation treatment. Journal of Food Protection, 69(9), 2066–2074.

    Google Scholar 

  • Álvarez, I., Pagán, R., Condón, S., and Raso, J. (2003c). The influence of process parameters for the inactivation of Listeria monocytogenes by pulsed electric fields, International Journal of Food Microbiology, 87, 87–95.

    Article  Google Scholar 

  • Álvarez, I., Pagán, R., Raso, J., and Condón, S. (2002). Environmental factors influencing the inactivation of Listeria monocytogenes by pulsed electric fields. Letters in Applied Microbiology, 35, 489–493.

    Article  Google Scholar 

  • Álvarez, I., Virto, R., Raso, J., and Condón, S. (2003d). Comparing predicting models for the Escherichia coli inactivation by pulsed electric fields. Innovative Food Science and Emerging Technologies, 4, 195–202.

    Article  Google Scholar 

  • Ando, Y., and Tsuzuki, T. (1983). Mechanism of chemical manipulation of the heat resistance of Clostridium perfringens spores. Journal of Applied Bacteriology, 54, 197–202.

    CAS  Google Scholar 

  • Arce-García, M. R., Jiménez-Murguía, M. T., Palou, E., and López-Malo, A. (2002). Ultrasound treatments and antimicrobial agents effects on Zygosaccharomyces rouxii. IFT Annual Meeting Book of Abstracts, 2002, Session 91E-18.

    Google Scholar 

  • Aronsson, K., Borch, E., Stenlöf, B., and Rönner, U. (2004). Growth of pulsed electric field exposed Escherichia coli in relation to inactivation and environmental factors. International Journal of Food Microbiology, 93, 1–10.

    Article  Google Scholar 

  • Aronsson, K., and Rönner, U. (2001). Influence of pH, water activity and temperature on the inactivation of Escherichia coli and Saccharomyces cerevisiae by pulsed electric fields. Innovative Food Science and Emerging Technologies, 2, 105–112.

    Article  CAS  Google Scholar 

  • Baird-Parker, A. C., Boothroyd, M., and Jones, E. (1970). The effect of water activity on the heat resistance of heat sensitive and heat resistant strains of Salmonellae. Journal of Applied Bacteriology, 33, 515–522.

    CAS  Google Scholar 

  • Bender, G. R., and Marquis, R. E. (1985). Spore heat resistance and specific mineralization. Applied and Environmental Microbiology, 50(6), 1414–1421.

    CAS  Google Scholar 

  • Berger, J. A., and Marr, G. G. (1960). Sonic disruption of spores of Bacillus cereus. Journal of General Microbiology, 22, 1–64.

    Google Scholar 

  • Berlan, J., and Mason, T. J. (1992). Sonochemistry: From research laboratories to industrial plant. Ultrasonics, 30, 203–212.

    Article  CAS  Google Scholar 

  • Berliner, S. (1984). Application of ultrasonic processors. International Biotechnology Laboratory, 2, 42–49.

    Google Scholar 

  • Bigelow, W. D. (1921). The logarithmic nature of thermal death-time curves. Journal of Infectious Diseases, 28, 528–532.

    Article  Google Scholar 

  • Burgos, J., Ordóñez, J. A., and Sala F. J. (1972). Effect of ultrasonic waves on the heat resistance of Bacillus cereus and Bacillus licheniformis spores. Applied Microbiology, 24, 497–498.

    CAS  Google Scholar 

  • Cerf, O. (1977). Tailing of survival curves of bacterial spores. Journal of Applied Bacteriology, 42, 1–19.

    CAS  Google Scholar 

  • Chen, H., and Hoover, D. G. (2003). Pressure inactivation kinetics of Yersinia enterocolitica ATCC 35669. International Journal of Food Microbiology, 87, 161–171.

    Article  Google Scholar 

  • Chen, H., and Hoover, D. G. (2004). Use of Weibull model to describe and predict pressure inactivation of Listeria monocytogenes Scott A in whole milk. Innovative Food Science and Emerging Technologies, 5, 269– 276.

    Article  CAS  Google Scholar 

  • Condón, S., Raso, J., and Pagán, R. (2005). Microbial inactivation by ultrasound. In Barbosa-Cánovas, G. V., Tapia M. S., Cano, M. P. (eds.), Novel Food Processing Technologies, pp. 423–442. Boca Ratón, FL, CRC.

    Google Scholar 

  • Condón, S., and Sala, F. J. (1992). Heat resistance of Bacillus subtilis in buffer and foods of different pH. Journal of Food Protection, 55, 605–608.

    Google Scholar 

  • Corry, J. (1974). The effect of sugars and polyols on the heat resistance of salmonellae. Journal of Applied Bacteriology, 37, 31–43.

    CAS  Google Scholar 

  • Davies, R. (1959). Observations of the use of ultrasound waves for the disruption of microorganisms. Biochemica Biophysica Acta, 33, 481–493.

    Article  CAS  Google Scholar 

  • Doyle, M. E., and Mazzotta, A. S. (2000). Review of studies on the thermal resistance of salmonellae. Journal of Food Protection, 63, 779–795.

    CAS  Google Scholar 

  • Earnshaw, R. G., Appleyard, J., and Hurst, R. M. (1995). Understanding physical inactivation processes: combining preservation opportunities using heat, ultrasound and pressure. International Journal of Food Microbiology, 28, 197–219.

    Article  CAS  Google Scholar 

  • Fernández, A., Collado, J., Cunha, L. M., Ocio, M. J., and Martinez, A. (2002). Empirical model building based on Weibull distribution to describe the joint effect of pH and temperature on the thermal resistance of Bacillus cereus in vegetable substrate. International Journal of Food Microbiology, 77, 147–153.

    Article  Google Scholar 

  • Flint, E. B., and Suslick, K. S. (1991). The temperature of cavitation. Science, 253, 1397–1398.

    Article  CAS  Google Scholar 

  • Frizzell, L. A. (1988). Biological effects of acoustic cavitation. In: Suslick, K. (ed.), Ultrasound: Its Chemical, Physical, and Biological Effects, pp. 287–306. New York, NY, VCH.

    Google Scholar 

  • García, D., Gómez, N., Condón, S., Raso, J., and Pagán, R. (2003). Pulsed electric fields cause sublethal injury in Escherichia coli. Letters in Applied Microbiology, 36, 140–144.

    Article  Google Scholar 

  • García, D., Gómez, N., Raso, J., and Pagán, R. (2005). Bacterial resistance after pulsed electric fields depending on the treatment medium pH. Innovative Food Science and Emerging Technologies, 6, 388–395.

    Article  CAS  Google Scholar 

  • García, M. L. (1985). Acción de los tratamientos ultrasónicos y térmicos en los esporos de B. subtilis. Ph.D. Thesis. University of Complutense, Madrid.

    Google Scholar 

  • García, M. L., Burgos, J., Sanz, B., and Ordónez, J. A. (1989). Effect of heat and ultrasonic waves on the survial of two strains of Bacillus subtilis. Journal of Applied Bacteriology, 67, 619–628.

    Google Scholar 

  • Geveke, D. J., and Kozempel, M. F. (2003). Pulsed electric field effects on bacteria and yeast cells. Journal of Food Processing and Preservation, 27, 65–72.

    Article  Google Scholar 

  • Gómez, N., García, D., Álvarez, I., Condón, S., and Raso, J. (2005a). Modeling inactivation of Listeria monocytogenes by pulsed electric fields. International Journal of Food Microbiology, 103, 199–206.

    Article  CAS  Google Scholar 

  • Gómez, N., García, D., Álvarez, I., Raso, J., and Condón, S. (2005b). A model describing the kinetics of inactivation of Lactobacillus plantarum in a buffer system of different pH and in orange and apple juice. Journal of Food Engeeniering, 70, 7–14.

    Article  Google Scholar 

  • Gould, G. W. (1989). Heat induced injury and inactvation. In: Gould, G. W. (ed.), Mechanisms of Action of Food Preservation Procedures, pp. 11–42. London, Elsevier Applied Science.

    Google Scholar 

  • Grahl, T., and Märkl, H. (1996). Killing of microorganisms by pulsed electric fields. Applied Microbiology and Biotechnology, 45, 148–157.

    Article  CAS  Google Scholar 

  • Guerrero, S., Tognon, M., and Alzadora, S. M. (2005). Response of Saccharomyces cerevisiae to the combined action of ultrasound and low weight chitosan. Food Control, 16, 131–139.

    Article  CAS  Google Scholar 

  • Hansen, N. J., and Riemann, H. (1963). Factors affecting the heat resistance of nonsporing organisms. Journal of Applied Bacteriology, 20, 314–318.

    Google Scholar 

  • Harvey, E., and Loomis, A. (1929). The destruction of luminuous bacteria by high frequency sound waves. Journal of Bacteriology, 17, 373–379.

    CAS  Google Scholar 

  • Hassani, M., Álvarez, I., Raso, J., Condón, S., and Pagán, R. (2005). Comparing predicting models for heat inactivation of Listeria monocytogenes and Pseudomonas aeruginosa at different pHs. International Journal of Food Microbiology, 100, 213–222.

    Article  CAS  Google Scholar 

  • Hassani, M., Mañas, P., Condón S., and Pagán, R. (2006). Predicting heat inactivation of Staphylococcus aureus under nonisothermal treatments at different pH. Molecular Nutrition and Food Research, 50, 572–580.

    Article  CAS  Google Scholar 

  • Hauben, K. J. A., Bernaerts, K., and Michiels, C. W. (1998). Protective effect of calcium on inactivation of Escherichia coli by high hydrostatic pressure. Journal of Applied Microbiology, 85, 678–684.

    Article  CAS  Google Scholar 

  • Heinz, V., and Knorr, D. (1996). High pressure inactivation kinetics of Bacillus subtilis cells by a three-state model considering distributed resistance mechanisms. Food Biotechnology, 10, 149–161.

    Article  Google Scholar 

  • Helander, I. M., von Wright, A., and Mattila-Sandholm, T. M. (1997). Potential of lactic acid bacteria and novel antimicrobials against Gram-negative bacteria. Trends in Food Science and Technology, 8, 146–150.

    Article  CAS  Google Scholar 

  • Hülsheger, H., Potel, J., and Niemann, E. G. (1981). Killing of bacteria with electric pulses of high field strength. Radiation and Environmental Biophysics, 20, 53–65.

    Article  Google Scholar 

  • Hurst, R. M., Betts, G. D., and Earnshaw, R. G. (1995). The antimicrobial effect of power ultrasound. RandD Report No.4; Glos, Chipping Campden.

    Google Scholar 

  • Jacobs, S. E., and Thornley, M. J. (1954). The lethal action of ultrasonic waves on bacteria suspended in milk and other liquids. Journal of Applied Bacteriology, 17, 38–56.

    Google Scholar 

  • Jay, J. M. (1992). High temperature food preservation and characteristics of thermophilic microorganisms. In: Jay, J. M. (ed.), Modern Food Microbiology, pp. 335–355. New York, NY, Chapman and Hall.

    Google Scholar 

  • Kinsloe, H., Ackerman, E., and Reid, J. J. (1954). Exposure of microorganisms to measured sound fields. Journal Bacteriology, 68, 373–380.

    Article  CAS  Google Scholar 

  • Koseki, S., and Yamamoto, K. (2006). pH and solute concentration of suspension media affect the outcome of high hydrostatic pressure treatment of Listeria monocytogenes. International Journal of Food Microbiology, 11, 175–179.

    Article  CAS  Google Scholar 

  • Kwast, R. H., and Verrips, C. T. (1982). Heat resistance of Salmonella senftenberg 775 W at various sucrose concentrations in distilled water. European Journal of Applied Microbiology and Biotechnology, 14, 193–201.

    Article  CAS  Google Scholar 

  • Lee, D. U., Heinz, V., and Knorr, D. (2003). Effects of combination treatments of nisin and high-intensity ultrasound with high pressure on the microbial inactivation of liquid whole egg. Innovative Food Science and Emerging Technologies, 4, 387–393.

    Article  CAS  Google Scholar 

  • Lee, H., Zhou, B., Liang, W., Feng, H. and Martin, S. E. (2009). Inactivation of Escherichia coli with sonication, manosonication and manothermosonication: Microbial responses and kinetics modelling. Journal of Food Engineering, 93, 354–364.

    Article  Google Scholar 

  • Lindquist, S. (1986) The heat-shock response. Annual Reviews in Biochemistry, 55, 1151–1191.

    Article  CAS  Google Scholar 

  • López-Malo, A., Enrique Palou, E., Maribel Jiménez-Fernández, M., Alzamora, S. M., and Guerrero, S. (2005). Multifactorial fungal inactivation combining thermosonication and Antimicrobials. Journal of Food Engineering, 67, 87–93.

    Article  Google Scholar 

  • Mackey, B. M., and Derrick, C. M. (1986) Elevation of the heat resistance of Salmonella typhimurium by sub-lethal heat shock. Journal of Applied Bacteriology, 61, 389–393.

    CAS  Google Scholar 

  • Mackey, B. M., Forestiere, K., and Isaacs, N. (1995). Factors affecting the resistance of Listeria monocytogenes to high hydrostatic-pressure. Food Biotechnology, 9, 1–11.

    Article  CAS  Google Scholar 

  • Mafart, P., Couvert, O., Gaillard, S., and Leguerinel, I. (2002). On calculating sterility in thermal preservation methods: Application of the Weibull frequency distribution model, International Journal of Food Microbiology, 72, 107–113.

    Article  CAS  Google Scholar 

  • Mañas, P. (1999). Higienización del huevo liquido por ultrasonidos y calor. Ph.D. Thesis, University of Zaragoza.

    Google Scholar 

  • Mañas, P., Pagán, R., and Raso, J. (2000a). Predicting lethal effect of ultrasonic waves under pressure treatments on Listeria monocytogenes ATCC 15313 by power measurements. Journal of Food Science, 65(4), 663–667.

    Article  Google Scholar 

  • Mañas, P., Pagán, R., Raso, J., Sala F. J., and Condón S. (2000b). Inactivation of S. typhimurium, S. enteritidis and S. senftenberg by ultrasonic waves under pressure. Journal of Food Protection, 63, 451–456.

    Google Scholar 

  • Mañas, P., Pagán, R., Sala, F. J., and Condón, S. (2001). Low molecular weight milk whey components protect Salmonella senftenberg 775 W against heat by mechanism involving divalent cations. Journal of Applied Microbiology, 91, 871–877.

    Article  Google Scholar 

  • Moats, W. A., Dabbah, R., and Edwards, V. M. (1971). Interpretation of nonlogarithmic survivor curves of heated bacteria. Journal of Food Science, 36, 523–526.

    Article  Google Scholar 

  • Murphy, R. Y., Marks, B. P., Johnson, E. R., and Johnson, M. J. (2000). Thermal inactivation kinetics of Salmonella and Listeria in ground chicken breast meat and liquid medium. Journal of Food Science, 65, 706–710.

    Article  CAS  Google Scholar 

  • Ordóñez, J. A., Aguilera, M. A., García M. L., and Sanz, B. (1986). Effect of combined ultrasonic and heat treatment (thermoultrasonication) on the survival of a strain of Staplylococcus aureus. Journal of Dairy Research, 54, 61–67.

    Article  Google Scholar 

  • Ordóñez, J. A., Sanz, B., Hernández, P. E., and López-Lorenzo, P. A. (1984). Note on the effect of combined ultrasonic and heat treatments on the survival of thermoduric streptococci. Journal of Applied Bacteriology, 56, 175–177.

    Google Scholar 

  • Pagán, R. (1997). Resistencia frente al calor y los ultrasonidos bajo presión de Aeromonas hydrophila, Yersinia enterocolitica y Listeria monocytogenes. Ph.D. Thesis, University of Zaragoza.

    Google Scholar 

  • Pagán, R., Mañas, P., Álvarez, I., and Condón, S. (1999a). Resistance of Listeria monocytogenes to ultrasonic waves under pressure at sublethal (manosonication) and lethal (manothermosonication) temperatures. Food Microbiology, 16, 139–148.

    Article  Google Scholar 

  • Pagán, R., Mañas, P., Palop, A., and Sala, F. J. (1999b). Resistance of heat-shocked cells of Listeria monocytogenes to manosonication and to manothermosonication. Letters in Applied Microbiology, 28, 71–75.

    Article  Google Scholar 

  • Pagán, R., Mañas, P., Raso, J., and Condón, S. (1999c). Bacterial resistance to ultrasonic waves under pressure at non lethal (manosonication) and lethal (manothermosonication) temperatures. Applied and Environmental Microbiology, 65, 297–300.

    Google Scholar 

  • Pagán, R., Mañas, P., Raso, J., and Sala-Trepat, F. J. (1999d). Heat resistance of Yersinia enterocolitica grown at different temperatures and heated in different media. International Journal of Food Microbiology, 47, 59–66.

    Article  Google Scholar 

  • Palacios, P., Burgos, J., Hoz, L., Sanz, B., and Ordóñez, J. A. (1991). Study of the substances released to ultrasonic treatment form Bacillus stearothermophilus spores. Journal of Applied Bacteriology, 71, 445–451.

    CAS  Google Scholar 

  • Palop, A., Sala, F. J., and Condón, S. (1997). Occurrence of a highly heat-sensitive spore subpopulation of Bacillus coagulans STCC 4522 and its conversion to a more heat-stable form. Applied and Environmental Microbiology, 63(6), 2246–2251.

    CAS  Google Scholar 

  • Parsell, D. A., and Lindquist, S. (1993). The function of heat-shock proteins in stress tolerance: Degradation and reactivation of damaged proteins. Annual Reviews in Genetics, 27, 437–496.

    Article  CAS  Google Scholar 

  • Patterson, M. F., Quinn, M., Simpson, R., and Gilmour, A. (1995). Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate-buffered saline and foods. Journal of Food Protection, 58, 524–529.

    Google Scholar 

  • Peleg, M. (1999). On calculating sterility in thermal and nonthermal preservation methods. Food Research International, 32, 271–278.

    Article  Google Scholar 

  • Peleg, M., and Cole, M. B. (1998). Reinterpretation of microbial survival curves. Critical Reviews in Food Science and Nutrition, 38, 353–380.

    Article  CAS  Google Scholar 

  • Rahn, O. (1945). Physical methods of sterilization of microorganisms. Bacteriological Reviews, 9, 1–45.

    CAS  Google Scholar 

  • Raso, J. (1995). Resistencia microbiana a un tratamiento combinado de ultrasonidos y calor bajo presión. Manotermosonicación. Ph.D. Thesis, University of de Zaragoza.

    Google Scholar 

  • Raso, J., Condón, J., and Sala-Trepat F. J. (1994). Mano-thermo-sonication: A new method of food preservation? Food Preservation by Combined Processes. Final Report FLAIR Concerted Action No. 7, Subgroup B. Lesitner, L. and Gorris, L. G. M. Food linked agro-industrial research. Directorate-General XII, Science, Research and Development.

    Google Scholar 

  • Raso, J., Mañas, P., Pagán, R., and Sala, F. J. (1999). Influence of different factors on the output power transferred into medium by ultrasound. Ultrasonics Sonochemistry, 5, 157–162.

    Article  CAS  Google Scholar 

  • Raso, J., Pagán, R., Condón, S., and Sala, F. J. (1998a). Influence of temperature and pressure on the lethality of ultrasound. Applied and Environmental Microbiology, 64, 465–471.

    CAS  Google Scholar 

  • Raso, J., Palop, A., Pagán, R., and Condón, S. (1998b). Inactivation of Bacillus subtilis spores by combining ultrasonic waves under pressure and mild heat treatment. Journal of Applied Microbiology, 85, 849–854.

    Article  CAS  Google Scholar 

  • Riesz, P. and Kondo, T. (1992). Free radical formation induced by ultrasoundand its biological implications. Free Radical Biology and Medicine, 13, 247–270.

    Article  CAS  Google Scholar 

  • Sala, F. J., Burgos, J., Condón, S., López, P., and Raso, J. (1992). Procedimiento para la destrucción de microorganismos y enzimas: proceso MTS. Spanish Patent 93/00021.

    Google Scholar 

  • Sala, F. J., Burgos, J., Condón, S., López, P., and Raso J. (1995). Effect of heat and ultrasound on micro-organisms and enzymes. In: Gould, G. W. (ed.), New Methods of Food Preservation, pp. 176–204. London, Blackie Academic and Professional.

    Google Scholar 

  • Schlesinger, M. J. (1986) Heat shock proteins: The search for functions. Journal of Cell Biology, 103, 321–325.

    Article  CAS  Google Scholar 

  • Sherry, A. E., Patterson, M. F., and Madden, R. H. (2004). Comparison of 40 Salmonella enterica serovars injured by thermal, high-pressure and irradiation stress. Journal of Applied Microbiology, 96, 887–893.

    Article  CAS  Google Scholar 

  • Shin, S. Y., Calvisi, E. G., Beaman, T. C., Pankratz, H. S., Gerhardt, P., and Marquis, R. E. (1994). Microscopic and thermal characterisation of hydrogen peroxide killing and lysis of spores and protection by transition metal ions, chelators and antioxidants. Applied and Environmental Microbiology, 60, 3192–3197.

    CAS  Google Scholar 

  • Shull, J. J., Cargo, G. T., and Ernst, R. R. (1963). Kinetics of heat activation and thermal death of bacterial spores. Applied Microbiology, 11, 485–487.

    CAS  Google Scholar 

  • Simpson, R. K., and Gilmour, A. (1997). The effect of high hydrostatic pressure on the activity of intracellular enzymes of Listeria monocytogenes. Letters in Applied Microbiology, 25, 48–53.

    Article  CAS  Google Scholar 

  • Stevens, K. A., Sheldon, B. W., and Klaenhammer, N. A. (1992). Effect of treatment conditions on nisin inactivation of Gram negative Bacteria. Journal of Food Protection, 55, 763–766.

    CAS  Google Scholar 

  • Stewart, C. M., Jewett, F. F., Dunne, C. P., and Hoover, D. G. (1997). Effect of concurrent high hydrostatic pressure, acidity and heat on the injury and destruction of Listeria monocytogenes. Journal Food Safety, 17, 23–36.

    Article  Google Scholar 

  • Stumbo, C. R. (1965). Thermobacteriology in Food Processing. London, Academic.

    Google Scholar 

  • Sumner, S. S., Sandros, T. M., Harmon, M. C., Scott, V. N., and Bernard, D. T. (1991). Heat resistance of Salmonella typhimurium and Listeria monocytogenes in sucrose solutions of various water activities. Journal of Food Science, 56(6), 1741–1743.

    Article  CAS  Google Scholar 

  • Suslick, K. S. (1988). Homogeneous sonochemistry. In: Suslick, K. S. (ed.), Ultrasound. Its Chemical, Physical and Biological Effects, pp. 123–163. New York, NY, VCH.

    Google Scholar 

  • Suslick, K. S. (1990). Sonochemistry. Science, 247, 1439–1445.

    Article  CAS  Google Scholar 

  • Tomlins, R. I., and Ordal, Z. J. (1976). Thermal injury and inactivation in vegetative bacteria. In: Skinner, F. A., and Hugo, W. B. (eds.), Inhibition and Inactivation of Vegetative Microbes, pp. 153–191. London, Academic.

    Google Scholar 

  • Tsuchiya, H., Sato, M., Kanematsu, N., Kato, M., Hoshino, Y., Takagi, N., and Namikawa, I. (1987). Temperature-dependent changes in phospholipid and fatty acid composition and membrane lipid fluidity of Yersinia enterocolitica. Letters in Applied Microbiology, 5, 15–18.

    Article  CAS  Google Scholar 

  • Whillock, G. O. H., and Harvey, B. F. (1997). Ultrasonically enhanced corrosion of 304L stainless steel: I. The effect of temperature and hydrostatic pressure. Ultrasound sonochemistry, 4, 23–31.

    Article  CAS  Google Scholar 

  • Wouters, P. C., Glaasker, E., and Smelt, J. P. P. M. (1998). Effects of high pressure on inactivation kinetics and events related to proton efflux in Lactobacillus plantarum. Applied and Environmental Microbiology, 64, 509–514.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Condón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Condón, S., Mañas, P., Cebrián, G. (2011). Manothermosonication for Microbial Inactivation. In: Feng, H., Barbosa-Canovas, G., Weiss, J. (eds) Ultrasound Technologies for Food and Bioprocessing. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7472-3_11

Download citation

Publish with us

Policies and ethics