Skip to main content

Anatomy and Physiology of Sensory Systems

  • Chapter
  • First Online:
Intraoperative Neurophysiological Monitoring

Abstract

The receptors and the nervous system of our five sensory systems report events that occur outside the body to the brain as well as events that occur inside the body. Some of these events create conscious awareness while others do not. Some of the activation of sensory systems produces conscious awareness, whereas other sensory activation occurs without producing any awareness. Sensory information from the body itself is known as unconscious proprioception, and this kind of sensory activation occurs in the somatosensory system. A second type of sensory activation, exteroception, is concerned with events from outside the body such as touch, vibration, heat, and cold. Hearing, vision, taste, and olfaction are also senses of events from outside the body, thus, they too are included as sensations of exteroception. When the stimuli for these senses exceed the threshold for activation, they almost always cause awareness. Proprioception, such as that which occurs in the somatosensory system, can take place without creating any awareness, or it can cause awareness, for example, of the position of a limb. Conscious proprioception provides information about orientation of the body, movements of limbs, etc. The unconscious proprioception provides feedback to the motor system from receptors in muscles, ­tendons, and joints. This part of the somatosensory system is essential for controlling movements, and the loss of such feedback causes serious movement faults. Unconscious proprioception might be regarded as a part of the motor system rather than a part of the somatosensory system. The somatosensory system is, therefore, closely associated with the motor system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Møller AR (2003) Sensory Systems: Anatomy and Physiology. Amsterdam: Academic Press.

    Google Scholar 

  2. Rexed BA (1954) Cytoarchitectonic atlas of the spinal cord. J. Comp. Neurol. 100:297–379.

    Article  CAS  PubMed  Google Scholar 

  3. Brown AG (1981) Organization in the Spinal Cord: The Anatomy and Phsysiology of Identified Neurons. New York: Springer.

    Google Scholar 

  4. Møller AR (2006) Neural Plasticity and Disorders of the Nervous System. Cambridge: Cambridge University Press

    Book  Google Scholar 

  5. Tracey DJ (1982) Pathways in proprioception. In: G Garlick, (Ed.) Proprioception, Posture, and Emotion. Kensington, N.S.W: University of New South Wales Press, 23–56.

    Google Scholar 

  6. Landgren S and H Silfvenius (1971) Nucleus Z, the medullary relay in the projection path to the cerebral cortex of group i muscle afferents from the cat’s hind limb. J. Physiol. (Lond.) 218:551–71.

    CAS  Google Scholar 

  7. Brodal A and O Pompeiano (1957) The vestibular nuclei in cat. J. Anat. 91:438–54.

    CAS  PubMed  Google Scholar 

  8. Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic cortex. J. Neurophysiol. 20:408–34.

    CAS  PubMed  Google Scholar 

  9. Powell TPS and VB Mountcastle (1959) Some aspects on the functional organization of the cortex of the postcentral gyrus obtained in a single unit analysis with cytoarchitecture. Bull. Johns Hopkins Hosp. 105:133–62.

    CAS  PubMed  Google Scholar 

  10. Hume AL and BR Cant (1978) Conduction time in central somatosensory pathways in man. Electroencephalogr. Clin. Neurophysiol. 45:361–75.

    Article  CAS  PubMed  Google Scholar 

  11. Gilmore R (1992) Somatosensory evoked potential testing in infants and children. J. Clin. Neurophysiol. 9:324–41.

    Article  CAS  PubMed  Google Scholar 

  12. Desmedt JE and G Cheron (1980) Central somatosensory conduction in man: Neural generators and interpeak latencies of the far-field components recorded from neck and right or left scalp and earlobes. Electroencephalogr. Clin. Neurophysiol. 50:382–403.

    Article  CAS  PubMed  Google Scholar 

  13. Desmedt JE and G Cheron (1981) Non-cephalic reference recording of early somatosensory potentials to finger stimulation in adult or aging normal man: Differentiation of widespread Nl8 and contra-lateral N20 from the prerolandic P22 and N30 components. Electroencephalogr. Clin. Neurophysiol. 52:553–70.

    Article  CAS  PubMed  Google Scholar 

  14. Lueders H, RP Lesser, JR Hahn et al (1983) Subcortical somatosensory evoked potentials to median nerve stimulation. Brain 106:341–72.

    Article  PubMed  Google Scholar 

  15. Mauguiere F, JE Desmedt and J Courjon (1983) Neural generators of N18 and P14 far-field somatosensory evoked potentials studied in patients with lesion of thalamus or thalamo-cortical radia-tions. Electroencephalogr. Clin. Neurophysiol. 56:283–92.

    Article  CAS  PubMed  Google Scholar 

  16. Møller A, R, PJ Jannetta and JE Burgess (1986) Neural generators of the somatosensory evoked potentials: Recording from the cuneate nucleus in man and monkeys. Electroencephalogr. Clin. Neurophysiol. 65:24 l–248.

    Google Scholar 

  17. Cracco RQ and JB Cracco (1976) Somatosensory evoked potentials in man: Farfield potentials. Electroencephalogr. Clin. Neurophysiol. 41:60–466.

    Google Scholar 

  18. Desmedt JE and G Cheron (1981) Prevertebral (oesophageal) record-ing of subcortical somatosensory evoked potentials in man: The spinal Pl3 component and the dual nature of the spinal genera-tors. Electroencephalogr. Clin. Neurophysiol. 52:257–75.

    Article  CAS  PubMed  Google Scholar 

  19. Allison T and L Hume (1981) A comparative analysis of short-latency somatosensory evoked potentials in man, monkey, cat, and rat. Exp. Neurol. 72:592–611.

    Article  CAS  PubMed  Google Scholar 

  20. Møller AR, PJ Jannetta and HD Jho (1990) Recordings from human dorsal column nuclei using stimulation of the lower limb. Neurosurgery 26:291–9.

    Article  PubMed  Google Scholar 

  21. Lorente de Nó R (1947) Action potentials of the motoneurons of the hypoglossus nucleus. J. Cell Comp. Physiol. 29:207–87.

    Article  Google Scholar 

  22. Desmedt JE (1989) Somatosensory evoked potentials in neuromonitoring. In: JE Desmedt (Ed.) Neuromonitoring in Surgery. Amsterdam: Elsevier Science Publishers, 1–21.

    Google Scholar 

  23. Berkley KJ, RJ Budell, A Blomqvist et al (1986) Output systems of the dorsal column nuclei in the cat. Brain Res. Rev. 396:199–226.

    Article  CAS  Google Scholar 

  24. Erwin CW and AC Erwin (1993) Up and down the spinal cord: Intraoperative monitoring of sensory and motor spinal cord pathways. J. Clin. Neurophysiol. 10:425–36.

    Article  CAS  PubMed  Google Scholar 

  25. Møller AR (2006) Hearing: Anatomy, Physiology, and Disorders of the Auditory System, 2nd ­edition. Amsterdam: Academic Press.

    Google Scholar 

  26. Pickles JO (1988) An Introduction to the Physiology of Hearing, 2nd edition. London: Academic Press.

    Google Scholar 

  27. Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the mossbauer technique. J. Acoust. Soc. Am. 49:1218–31.

    Article  PubMed  Google Scholar 

  28. Sellick PM, R Patuzzi and BM Johnstone (1982) Measurement of basilar membrane motion in the guinea pig using the Mossbauer technique. J. Acoust. Soc. Am. 72:131–41.

    Article  CAS  PubMed  Google Scholar 

  29. Spoendlin H (1970) Structural basis of peripheral frequency analysis. In: R Plomp and GF Smoorenburg (Eds.) Frequency Analysis and Periodicity Detection in Hearing. Leiden: A. W. Sijthoff, 2–36.

    Google Scholar 

  30. Eggermont JJ, DW Odenthal, DH Schmidt et al (1974) Electrocochleography: Basic principles and clinical applications. Acta Otolaryngol. (Stockh.) Suppl. 316:1–84.

    Google Scholar 

  31. Eggermont JJ, A Spoor and DW Odenthal (1976) Frequency specificity of tone-burts electrocochleography. In: RJ Ruben, C Elberling and G Salomon (Eds.) Electrocochleography, Baltimore, MD: University Park Press, 215–46.

    Google Scholar 

  32. Winer JA and CC Lee (2007) The distributed auditory cortex. Hear. Res. 229:3–13.

    Article  PubMed  Google Scholar 

  33. Andersen P, PL Knight and MM Merzenich (1980) The thalamocortical and corticothalamic connections of AI, AII, and the anterior field (AAF) in the cat: evidence for two largely segregated systems of connections. J. Comp. Neurol. 194:663–701.

    Article  CAS  PubMed  Google Scholar 

  34. Baguley DM (2003) Hyperacusis. J R Soc Med. 96:582–5.

    Article  PubMed  Google Scholar 

  35. Llinas RR, U Ribary, D Jeanmonod et al (1999) Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl. Acad. Sci. 96:15222–7.

    Article  CAS  PubMed  Google Scholar 

  36. Møller AR and P Rollins (2002) The non-classical auditory system is active in children but not in adults. Neurosci. Lett. 319:41–4.

    Article  PubMed  Google Scholar 

  37. Shannon RV, F-G Zeng, V Kamath et al (1995) Speech recognition with primarily temporal cues. Science 270:303–4.

    Article  CAS  PubMed  Google Scholar 

  38. Loizou PC (2006) Speech processing in vocoder-centric cochlear implants. In: AR Møller (Ed.) Cochlear and Brainstem Implants. Basel: Karger, 109–43.

    Google Scholar 

  39. Winer JA, ML Chernock, DT Larue et al (2002) Descending projections to the inferior colliculus from the posterior thalamus and the auditory cortex in rat, cat, and monkey. Hear. Res. 168:181–95.

    Article  PubMed  Google Scholar 

  40. De Ridder D, G De Mulder, V Walsh et al (2004) Magnetic and electrical stimulation of the auditory cortex for intractable tinnitus. J. Neurosurg. 100:560–4.

    Article  PubMed  Google Scholar 

  41. Jewett DL and JS Williston (1971) Auditory evoked far fields averaged from scalp of humans. Brain 94:681–96.

    Article  CAS  PubMed  Google Scholar 

  42. Møller AR, HD Jho, M Yokota et al (1995) Contribution from crossed and uncrossed brainstem structures to the brainstem auditory evoked potentials (BAEP): A study in human. Laryngoscope 105:596–605.

    Article  PubMed  Google Scholar 

  43. Møller AR and PJ Jannetta (1981) Compound action potentials recorded intracranially from the auditory nerve in man. Exp. Neurol. 74:862–74.

    Article  PubMed  Google Scholar 

  44. Hashimoto I, Y Ishiyama, T Yoshimoto et al (1981) Brainstem auditory evoked potentials recorded directly from human brain stem and thalamus. Brain 104:841–59.

    Article  CAS  PubMed  Google Scholar 

  45. Spire JP, GJ Dohrmann and PS Prieto (1982) Correlation of brainstem evoked response with direct acoustic nerve potential. J Courjon, F Manguiere and M Reval (Ed.). Vol. 32. Raven Press: New York.

    Google Scholar 

  46. Scherg M and D von Cramon (1985) A new interpretation of the generators of BAEP waves I V: Results of a spatio temporal dipole. Electroencephalogr. Clin. Neurophysiol. 62:290–9.

    Article  CAS  PubMed  Google Scholar 

  47. Møller AR, PJ Jannetta and LN Sekhar (1988) Contributions from the auditory nerve to the brainstem auditory evoked potentials (BAEPs): Results of intracranial recording in man. Electroencephalogr. Clin. Neurophysiol. 71:198–211.

    Article  PubMed  Google Scholar 

  48. Møller AR, (1994) Neural generators of auditory evoked potentials. In: JT Jacobson (Ed.) Principles and Applications in Auditory Evoked Potentials. Boston: Allyn & Bacon. 23–46.

    Google Scholar 

  49. Kimura A, A Mitsudome, DO Beck et al (1983) Field distribution of antidromically activated digital nerve potentials: Models for far-field recordings. Neurology 33:1164–9.

    CAS  PubMed  Google Scholar 

  50. Martin WH, H Pratt and JW Schwegler (1995) The origin of the human auditory brainstem response wave II. Electroencephalogr. Clin. Neurophysiol. 96:357–70.

    Article  CAS  PubMed  Google Scholar 

  51. Buchwald JS and CM Huang (1975) Far field acoustic response: Origins in the cat. Science 189:382–4.

    Article  CAS  PubMed  Google Scholar 

  52. Achor L and A Starr (1980) Auditory brain stem responses in the cat: I. Intracranial and extracranial recordings. Electroencephalogr. Clin. Neurophysiol. 48:154–73.

    Article  CAS  PubMed  Google Scholar 

  53. Achor L and A Starr (1980) Auditory brain stem responses in the cat: II. Effects of lesions. Electroencephalogr. Clin. Neurophysiol. 48:174–90.

    Article  CAS  PubMed  Google Scholar 

  54. Møller AR and JE Burgess (1986) Neural generators of the brain stem auditory evoked potentials (BAEPs) in the rhesus monkey. Electroencephalogr. Clin. Neurophysiol. 65:361–72.

    Article  PubMed  Google Scholar 

  55. Lang J (1985) Anatomy of the brainstem and the lower cranial nerves, vessels, and surrounding structures. Am. J. Otol. Suppl, Nov:1–19.

    Google Scholar 

  56. Lang J (1981) Facial and vestibulocochlear nerve, topographic anatomy and variations. In: M Samii and P Jannetta (Eds.) The Cranial Nerves. New York: Springer, 363–77.

    Google Scholar 

  57. Fullerton BC, RA Levine, HL Hosford Dunn et al (1987) Comparison of cat and human brain stem auditory evoked potentials. Hear. Res. 66:547–70.

    Google Scholar 

  58. Spoendlin H and A Schrott (1989) Analysis of the human auditory nerve. Hear. Res. 43: 25–38.

    Article  CAS  PubMed  Google Scholar 

  59. Møller AR, V Colletti and FG Fiorino (1994) Neural conduction velocity of the human auditory nerve: Bipolar recordings from the exposed intracranial portion of the eighth nerve during vestibular nerve section. Electroencephalogr. Clin. Neurophysiol. 92:316–20.

    Article  PubMed  Google Scholar 

  60. Møller AR and PJ Jannetta (1983) Auditory evoked potentials recorded from the cochlear nucleus and its vicinity in man. J. Neurosurg. 59:1013–8.

    Article  PubMed  Google Scholar 

  61. Møller AR and HD Jho (1988) Responses from the brainstem at the entrance of the eighth nerve in human to contralateral stimulation. Hear. Res. 37:47–52.

    Article  PubMed  Google Scholar 

  62. Møller AR and PJ Jannetta (1982) Auditory evoked potentials recorded intracranially from the brainstem in man. Exp. Neurol. 78:144–57.

    Article  PubMed  Google Scholar 

  63. Møller AR, PJ Jannetta and HD Jho (1994) Click-evoked responses from the cochlear nucleus: A study in human. Electroencephalogr. Clin. Neurophysiol. 92:215–24.

    Article  PubMed  Google Scholar 

  64. Møller AR and PJ Jannetta (1982) Evoked potentials from the inferior colliculus in man. Electroencephalogr. Clin. Neurophysiol. 53:612–20.

    Article  PubMed  Google Scholar 

  65. Davis H and SK Hirsh (1979) A slow brain stem response for low-frequency audiometry. Audiology 18:441–65.

    Article  Google Scholar 

  66. Møller AR and PJ Jannetta (1983) Interpretation of brainstem auditory evoked potentials: Results from intracranial recordings in humans. Scand. Audiol. (Stockh.) 12:125–33.

    Article  Google Scholar 

  67. Wilson WB, WM Kirsch, H Neville et al (1976) Monitoring of visual function during parasellar surger. Surg. Neurol. 5:323–9.

    CAS  PubMed  Google Scholar 

  68. Cedzich C, J Schramm and R Fahlbusch (1987) Are flash-evoked visual potentials useful for intraoperative monitoring of visual pathway function? Neurosurgery 21:709–15.

    Article  CAS  PubMed  Google Scholar 

  69. Cedzich C, J Schramm, CF Mengedoht et al (1988) Factors that limit the use of flash visual evoked potentials for surgical monitoring. Electroencephalogr. Clin. Neurophysiol. 71: 142–5.

    Article  CAS  PubMed  Google Scholar 

  70. Chiappa K (1997) Evoked Potentials in Clinical Medicine, 3 rd edition. Philadelphia: Lippincott-Raven.

    Google Scholar 

  71. Kraut MA, JC Arezzo and HGJ Vaughan (1985) Intracortical generators of the flash VEP in monkeys. Electroencephalogr. Clin. Neurophysiol. 62:300–12.

    Article  CAS  PubMed  Google Scholar 

  72. Møller AR (1987) Electrophysiological monitoring of cranial nerves in operations in the skull base. In: LN Sekhar and VL Schramm Jr (Eds.) Tumors of the Cranial Base: Diagnosis and Treatment. Mt. Kisco, New York: Futura Publishing Co, 123–32.

    Google Scholar 

  73. Kimura J, A Mitsudome, T Yamada et al (1984) Stationary peaks from moving source in far-field recordings. Electroencephalogr. Clin. Neurophys. 58:351–61.

    Article  CAS  Google Scholar 

  74. Brodal P (2004) The Central Nervous System, 3 rd edition. New York: Oxford University Press.

    Google Scholar 

  75. Møller AR (1988) Evoked Potentials in Intraoperative Monitoring. Baltimore: Williams and Wilkins.

    Google Scholar 

  76. Penfield W and T Rasmussen (1950) The Cerebral Cortex of Man: A Clinical Study of Localization of Function. New York: Macmillan.

    Google Scholar 

  77. Sessle BJ (1986) Recent development in pain research: Central mechanism of orofacial pain and its control. J. Endod. 12:435–44.

    Article  CAS  PubMed  Google Scholar 

  78. Brodel M (1946) Three Unpublished Drawings of the Anatomy of the Human Ear. Philadelphia: W.B.Saunders.

    Google Scholar 

  79. Møller AR (1975) Noise as a health hazard. Ambio 4:6–13,.

    Google Scholar 

  80. Zweig G, R Lipes and JR Pierce (1976) The cochlear compromise. J. Acoust. Soc. Am. 59:975–82.

    Article  CAS  PubMed  Google Scholar 

  81. Johnstone BM, R Patuzzi and GK Yates (1986) Basilar membrane measurements and the traveling wave. Hear. Res. 22:147–53.

    Article  CAS  PubMed  Google Scholar 

  82. Møller AR (1983) On the origin of the compound action potentials (N1N2) of the cochlea of the rat. Exp. Neurol. 80: 633–44.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aage R. Møller PhD (DMedSci) .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Møller, A.R. (2011). Anatomy and Physiology of Sensory Systems. In: Intraoperative Neurophysiological Monitoring. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7436-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7436-5_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7435-8

  • Online ISBN: 978-1-4419-7436-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics