Component-Specific Mapping for Low-Power Operation in the Presence of Variation and Aging

  • Benjamin Gojman
  • Nikil Mehta
  • Raphael Rubin
  • André DeHon
Chapter

Abstract

Traditional solutions to variation and aging cost energy. Adding static margins to tolerate high device variance and potential device degradation prevent aggressive voltage scaling to reduce energy. Post-fabrication configuration, as we have in FPGAs, provides an opportunity to avoid the high costs of static margins. Rather than assuming worst-case device characteristics, we can deploy devices based on their fabricated or aged characteristics. This allows us to place the high-speed/leaky devices as needed on critical paths and slower/less-leaky devices on non-critical paths. As a result, it becomes possible to meet system timing requirements at lower voltages than conservative margins. To exploit this post-fabrication configurability, we must customize the assignment of logical functions to resources based on the resource characteristics of a particular component after it has been fabricated and the resource characteristics have been determined—that is, component-specific mapping. When we perform this component-specific mapping, we can accommodate extremely high defect rates (e.g., 10%), high variation (e.g., \(\sigma_{V_{t}}=38\)%), as well as lifetime aging effects with low overhead. As the magnitude of aging effects increase, the mapping of functions to resources becomes an adaptive process that is continually refined in-system, throughout the lifetime of the component.

Keywords

Assure Sorting 

References

  1. 1.
    ITRS (2008) International technology roadmap for semiconductors. <http://www.itrs.net/Links/2008ITRS/Home2008.htm>
  2. 2.
    Luu J, Jamieson P, Kuon I, Betz V, Marquardat A, Rose J (2008) VPR and T-VPack: versatile Packing, Placement and Routing for FPGAs. <http://www.eecg.utoronto.ca/vpr/>
  3. 3.
    Alt H, Blum N, Mehlhorn K, Paul M (1991) Computing a maximum cardinality matching in a bipartite graph in time o(n1.5 pm/log (n)). Inf Process Lett 37(4):237–240. doi: http://dx.doi.org/10.1016/0020-0190(91)90195-NMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Asadi GH, Tahoori MB (2005) Soft error mitigation for SRAM-based FPGAs. In: Proceedings of the VLSI Test Symposium, pp 207–212Google Scholar
  5. 5.
    Asenov A (1998) Random dopant induced threshold voltage lowering and fluctuations in sub- 0.1 μm MOSFET’s: A 3-D “atomistic” simulation study. IEEE Trans Electron Devices 45(12):2505–2513CrossRefGoogle Scholar
  6. 6.
    Asenov A (2002) Intrinsic threshold voltage fluctuations in decanano MOSFETs due to local oxide thickness variation. IEEE Trans Electron Devices 49(1):112–119CrossRefGoogle Scholar
  7. 7.
    Asenov A, Kaya S, Brown AR (2003) Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness. IEEE Trans Electron Devices 50(5):1254–1260CrossRefGoogle Scholar
  8. 8.
    Ashoue M, Chatterjee A, Singh DA (2010) Post-manufacture tuning for Nano-CMOS yield recovery using reconfigurable logic. IEEE Trans VLSI Syst 18(4):675–679. doi: 10.1109/TVLSI.2009.2014559CrossRefGoogle Scholar
  9. 9.
    Austin T, Blaauw D, Mudge T, Flautner K (2004) Making typical silicon matter with Razor. IEEE Compu 37(3):57–65Google Scholar
  10. 10.
    Betz V, Rose J (1999) FPGA place-and-route challenge. <http://www.eecg.toronto.edu/vaughn/challenge/challenge.html>
  11. 11.
    Bijansky S, Aziz A (2008) TuneFPGA: post-silicon tuning of dual-Vdd FPGAs. In: Proceedings of the ACM/IEEE Design Automation ConferenceGoogle Scholar
  12. 12.
    Boning D, Panganiban J, Gonzalez-Valentin K, Nassif S, McDowell C, Gattiker A, Liu F (2002) Test structures for delay variability. In: Proceedings of the international workshop on timing issues in the specification and synthesis of digital systems. ACM, New York, NY, pp 109Google Scholar
  13. 13.
    Borghetti J, Snider GS, Kuekes PJ, Yang JJ, Stewart DR, Williams RS (2010) ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464(7290):873–876. doi: 10.1038/nature08940. URL http://dx.doi.org/10.1038/nature08940 CrossRefGoogle Scholar
  14. 14.
    Bowman KA, Tschanz JW, Kim NS, Lee JC, Wilkerson CB, Lu SLL, Karnik T, De VK (2009) Energy-efficient and metastability-immune resilient circuits for dynamic variation tolerance. IEEE J Solid State Circuits 44(1):49–63CrossRefGoogle Scholar
  15. 15.
    Brown CL, Jonas U, Preece JA, Ringsdorf H, Seitz M, Stoddart JF (2000) Introduction of [2]catenanes into langmuir films and langmuir-blodgett multilayers. a possible strategy for molecular information storage materials. Langmuir 16(4):1924–1930CrossRefGoogle Scholar
  16. 16.
    Cao Y, Clark L (2007) Mapping statistical process variations toward circuit performance variability: an analytical modeling approach. IEEE Trans Comput-Aided Des Integr Circ Syst 26(10):1866–1873CrossRefGoogle Scholar
  17. 17.
    Chen Y, Jung GY, Ohlberg DAA, Li X, Stewart DR, Jeppesen JO, Nielsen KA, Stoddart JF, Williams RS (2003) Nanoscale molecular-switch crossbar circuits. Nanotechnology 14:462–468CrossRefGoogle Scholar
  18. 18.
    Chen Y, Ohlberg DAA, Li X, Stewart DR, Williams RS, Jeppesen JO, Nielsen KA, Stoddart JF, Olynick DL, Anderson E (2003) Nanoscale molecular-switch devices fabricated by imprint lithography. Appl Phys Lett 82(10):1610–1612CrossRefGoogle Scholar
  19. 19.
    Cheng L, Xiong J, He L, Hutton M (2006) FPGA performance optimization via chipwise placement considering process variations. In: Proceedings of the international conference on field-programmable logic and applications, pp 1–6Google Scholar
  20. 20.
    Collier C, Mattersteig G, Wong E, Luo Y, Beverly K, Sampaio J, Raymo F, Stoddart J, Heath J (2000) A [2]Catenane-Based Solid State Reconfigurable Switch. Science 289:1172–1175CrossRefGoogle Scholar
  21. 21.
    Committee I.S. (1990) IEEE standard test access port and boundary-scan architecture. IEEE, 345 East 47th Street, New York, NY 10017-2394. IEEE Std 1149.1-1990Google Scholar
  22. 22.
    Cormen T, Leiserson C, Rivest R (1990) Introduction to Algorithms. MIT Press and McGraw, Cambridge, Massachusetts, New York.Google Scholar
  23. 23.
    Cui Y, Lauhon LJ, Gudiksen MS, Wang J, Lieber CM (2001) Diameter-controlled synthesis of single crystal silicon nanowires. Appled Phys Lett 78(15):2214–2216CrossRefGoogle Scholar
  24. 24.
    Culbertson WB, Amerson R, Carter R, Kuekes P, Snider G (1997) Defect tolerance on the TERAMAC custom computer. In: Proceedings of the IEEE symposium on FPGAs for custom computing machines, pp 116–123Google Scholar
  25. 25.
    DeHon A (2005) Design of programmable interconnect for sublithographic programmable logic arrays. in: proceedings of the international symposium on field-programmable gate arrays, pp 127–137Google Scholar
  26. 26.
    DeHon A (2005) Nanowire-based programmable architectures. ACM J Emerg Technol Comput Syst 1(2):109–162. doi: http://doi.acm.org/10.1145/1084748.1084750 CrossRefMathSciNetGoogle Scholar
  27. 27.
    DeHon A (2008) The case for reconfigurable components with logic scrubbing: regular hygiene keeps logic FIT (low). In: Proceedings of the international workshop on design and test of nano devices, circuits, and systems, pp 67–70Google Scholar
  28. 28.
    DeHon A, Likharev KK (2005) Hybrid CMOS/nanoelectronic digital circuits: Devices, architectures, and design automation. In: Proceedings of the international conference on computer aided design, pp 375–382Google Scholar
  29. 29.
    DeHon A, Lincoln P, Savage J (2003) Stochastic assembly of sublithographic nanoscale interfaces. IEEE Trans Nanotechnol 2(3):165–174CrossRefGoogle Scholar
  30. 30.
    DeHon A, Naeimi H (2005) Seven strategies for tolerating highly defective fabrication. IEEE Des Test Comput 22(4):306–315CrossRefGoogle Scholar
  31. 31.
    DeHon A, Wilson MJ (2004) Nanowire-based sublithographic programmable logic arrays. In: Proceedings of the international symposium on field-programmable gate arrays, pp 123–132Google Scholar
  32. 32.
    Dong Y, Yu G, McAlpine MC, Lu W, Lieber CM (2008) Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nanoletters 8(2):386–391Google Scholar
  33. 33.
    Emmert J, Stroud C, Skaggs B, Abramovici M (2000) Dynamic fault tolerance in FPGAs via partial reconfiguration. In: Proceedings of the IEEE symposium on field-programmable custom computing machines, pp 165–174Google Scholar
  34. 34.
    Fan Z, Mo X, Lou C, Yao Y, Wang D, Chen G, Lu JG (2005) Structures and electrical properties for Ag-tetracyanoquinodimetheane organometallic nanowires. IEEE Trans Nanotechnol 4(2):238–241CrossRefGoogle Scholar
  35. 35.
    Gojman B (2010) Algorithms and techniques for conquering extreme physical variation in bottomup nanoscale systems. Master’s thesis, California Institute of Technology. http://resolver.caltech.edu/CaltechTHESIS:04052010-152122284
  36. 36.
    Gojman B, DeHon A (2009) VMATCH: using logical variation to counteract physical variation in bottom-up, nanoscale systems. In: Proceedings of the international conference on field-programmable technology, pp 78–87. IEEEGoogle Scholar
  37. 37.
    Gojman B, Manem H, Rose GS, DeHon A (2009) Inversion schemes for sublithographic programmable logic arrays. IET Comput Digit Tech 3(6):625–642CrossRefGoogle Scholar
  38. 38.
    Goldstein SC, Budiu M (2001) NanoFabrics: spatial computing using molecular electronics. In: Proceedings of the international symposium on computer architecture, pp 178–189Google Scholar
  39. 39.
    Goldstein SC, Rosewater D (2002) Digital logic using molecular electronics. In: ISSCC digest of technical papers, pp 204–205. IEEEGoogle Scholar
  40. 40.
    Green JE, Choi JW, Boukai A, Bunimovich Y, Johnston-Halperin E, DeIonno E, Luo Y, Sheriff BA, Xu K, Shin YS, Tseng HR, Stoddart JF, Heath JR (2007) A 160- kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445:414–417CrossRefGoogle Scholar
  41. 41.
    Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415:617–620CrossRefGoogle Scholar
  42. 42.
    Gudiksen MS, Wang J, Lieber CM (2001) Synthetic control of the diameter and length of semiconductor nanowires. J Phys Chem B 105:4062–4064CrossRefGoogle Scholar
  43. 43.
    Hanson S, Zhai B, Bernstein K, Blaauw D, Bryant A, Chang L, Das KK, Haensch W, Nowak EJ, Sylvester DM (2006) Ultralow-voltage, minimum-energy CMOS. IBM J Res Dev 50(4–5):469–490CrossRefGoogle Scholar
  44. 44.
    Hauck S, DeHon A (eds) (2008) Reconfigurable computing: the theory and practice of FPGA based computation. Systems-on-Silicon. Elsevier, Burlington, MAGoogle Scholar
  45. 45.
    Heath JR, Kuekes PJ, Snider GS, Williams RS (1998) A defect-tolerant computer architecture: opportunities for nanotechnology. Science 280(5370):1716–1721CrossRefGoogle Scholar
  46. 46.
    Hopcroft JE, Karp RM (1973) An n2.5 algorithm for maximum matching in bipartite graphs. SIAM J Comput 2(4):225–231MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Huang Y, Duan X, Wei Q, Lieber CM (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291:630–633CrossRefGoogle Scholar
  48. 48.
    Katsuki K, Kotani M, Kobayashi K, Onodera H (2005) A yield and speed enhancement scheme under within-die variations on 90 nm LUT array. In: Proceedings of the IEEE custom integrated circuits conference, pp 601–604Google Scholar
  49. 49.
    Krishnan G (2005) Flexibility with EasyPath FPGAs. Xcell J 55:96–98Google Scholar
  50. 50.
    Lach J, Mangione-Smith WH, Potkonjak M (1998) Low overhead fault-tolerant FPGA systems. IEEE Trans VLSI Syst 26(2):212–221CrossRefGoogle Scholar
  51. 51.
    Lakamraju V, Tessier R (2000) Tolerating operational faults in cluster-based FPGAs. In: Proceedings of the international symposium on field-programmable gate arrays, pp 187–194Google Scholar
  52. 52.
    Lauhon LJ, Gudiksen MS, Wang D, Lieber CM (2002) Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420:57–61CrossRefGoogle Scholar
  53. 53.
    Law M, Goldberger J, Yang P (2004) Semiconductor nanowires and nanotubes. Annu Rev Mater Sci 34:83–122CrossRefGoogle Scholar
  54. 54.
    Lewis D, Ahmed E, Baeckler G, Betz V, Bourgeault M, Cashman D, Galloway D, Hutton M, Lane C, Lee A, Leventis P, Marquardt S, McClintock C, Padalia K, Pedersen B, Powell G, Ratchev B, Reddy S, Schleicher J, Stevens K, Yuan R, Cliff R, Rose J (2005) The Stratix-II logic and routing architecture. In: Proceedings of the international symposium on field-programmable gate arrays, pp 14–20Google Scholar
  55. 55.
    Lewis D, Betz V, Jefferson D, Lee A, Lane C, Leventis P, Marquardt S, McClintock C, Pedersen B, Powell G, Reddy S, Wysocki C, Cliff R, Rose J (2003) The Stratix routing and logic architecture. In: Proceedings of the international symposium on field- programmable gate arrays, pp 12–20Google Scholar
  56. 56.
    Li ML, Ramachandran P, Sahoo SK, Adve SV, Adve VS, Zhou Y (2008) Understanding the propagation of hard errors to software and implications for resilient system design. In: Proceedings of the international conference on architectural support for programming languages and operating systems, pp 265–276Google Scholar
  57. 57.
    Lin X, Press R, Rajski J, Reuter P, Rinderknecht T, Swanson B, Tamarapalli N (2003) High-frequency, at-speed scan testing. IEEE Des Test Comput 20(5):17–25CrossRefGoogle Scholar
  58. 58.
    Ling ZM, Cho J, Wells RW, Johnson CS, Davis SG (2003) Method of using partially defective programmable logic devices. US Patent 6,664,808Google Scholar
  59. 59.
    Luo Y, Collier P, Jeppesen JO, Nielsen KA, Delonno E, Ho G, Perkins J, Tseng HR, Yamamoto T, Stoddart JF, Heath JR (2002) Two-dimensional molecular electronics circuits. ChemPhysChem 3(6):519–525CrossRefGoogle Scholar
  60. 60.
    Matsumoto Y, Hioki M, Koike TKH, Tsutsumi T, Nakagawa T, Sekigawa T (2008) Suppression of intrinsic delay variation in FPGAs using multiple configurations. Trans Reconfig Technol Syst 1(1). Doi: http://doi.acm.org/10.1145/1331897.1331899
  61. 61.
    McMurchie L, Ebeling C (1995) PathFinder: a negotiation-based performance-driven router for FPGAs. In: Proceedings of the international symposium on field-programmable gate arrays, ACM, pp 111–117Google Scholar
  62. 62.
    Nabaaz G, Aziziy N, Najm FN (2006) An adaptive FPGA architecture with process variation compensation and reduced leakage. In: Proceedings of the ACM/IEEE design automation conference, pp 624–629Google Scholar
  63. 63.
    Naeimi H, DeHon A (2004) A greedy algorithm for tolerating defective crosspoints in NanoPLA design. In: Proceedings of the international conference on field-programmable technology, IEEE pp 49–56Google Scholar
  64. 64.
    Nagaraj K, Kundu S (2009) Process variation mitigation via post silicon clock tuning. In: Proceedings of the Great Lakes symposium on VLSI, pp 227–232Google Scholar
  65. 65.
    Parker KP (1992) The boundary-scan handbook. Kluwer, Norwell, MAGoogle Scholar
  66. 66.
    Paul S, Bhunia S (2008) MBARC: a scalable memory based reconfigurable computing framework for nanoscale devices. In: Proceedings of the Asia and South Pacific design automation conference, pp 77–82Google Scholar
  67. 67.
    Paul S, Chatterjee S, Mukhopadhyay S, Bhunia S (2009) Nanoscale reconfigurable computing using non-volatile 2-d sttram array. In: Proceedings fo the IEEE international conference on nanotechnologyGoogle Scholar
  68. 68.
    Peng SF (1996) Method and apparatus for testing semiconductor devices at speed. US Patent 5,524,114Google Scholar
  69. 69.
    Rabaey JM, Chandrakasan A, Nikolic B (1999) Digital integrated circuits, 2nd edn. Prentice Hall, Upper Saddle River, New JerseyGoogle Scholar
  70. 70.
    Radovanovic PV, Barrelet CJ, Gradecak S, Qian F, Lieber CM (2005) General syntehsis of manganese-doped II-VI and III-V semiconductor nanowires. Nanoletters 5(7):1407–1411Google Scholar
  71. 71.
    Rose GS, Stan MR (2007) A programmable majority logic array using molecular scale electronics. IEEE Trans Circuits Syst I Fundam Theory Appl 54(11):2380–2390CrossRefGoogle Scholar
  72. 72.
    Rubin R, DeHon A (2009) Choose-your-own-adventure routing: lightweight load-time defect avoidance. In: Proceedings of the international symposium on field-programmable gate arrays, pp 23–32Google Scholar
  73. 73.
    Sahoo SK, Li ML, Ramachandran P, Adve SV, Adve VS, Zhou Y (2008) Using likely program invariants to detect hardware errors. In: Proceedings of the international conference on dependable systems and networks, pp 70–79Google Scholar
  74. 74.
    Saleh A, Serrano J, Patel J (1990) Reliability of scrubbing recovery-techniques for memory systems. IEEE Trans Reliab 39(1):114–122MATHCrossRefGoogle Scholar
  75. 75.
    Saxena J, Butler KM, Gatt J, Raghuraman R, Kumar SP, Basu S, Campbell DJ, Berech J (2002) Scan-based transition fault testing – implementation and low cost test challenges. Proceedings of international test conference pp 1120–1129. doi: 10.1109/TEST.2002.1041869Google Scholar
  76. 76.
    Sedcole P, Cheung PYK (2006) Within-die delay variability in 90 nm FPGAs and beyond. In: Proceedings of the international conference on field-programmable technology, pp 97–104Google Scholar
  77. 77.
    Sedcole P, Cheung PYK (2008) Parametric yield modeling and simulations of FPGA circuits considering within-die delay variations. Trans Reconfig Technol Syst 1(2). doi: 10.1145/1371579.1371582Google Scholar
  78. 78.
    Sinha SK, Kamarchik PM, Goldstein SC (2000) Tunable fault tolerance for runtime reconfigurable architectures. In: Proceedings of the IEEE symposium on field-programmable custom computing machines, pp 185–192Google Scholar
  79. 79.
    Sivaswamy S, Bazargan K (2008) Statistical analysis and process variation-aware routing and skew assignment for FPGAs. Trans Reconfig Technol Syst 1(1):1–35. doi: http://doi.acm.org/10.1145/1331897.1331900 CrossRefGoogle Scholar
  80. 80.
    Snider G, Kuekes P, Williams RS (2004) CMOS-like logic in defective, nanoscale crossbars. Nanotechnology 15:881–891CrossRefGoogle Scholar
  81. 81.
    Snider GS, Williams RS (2007) Nano/CMOS architetures using a field-programmable nanowire interconnect. Nanotechnology 18(3)Google Scholar
  82. 82.
    Steiner N (2008) Autonomous computing systems. Ph.D. thesis, Virginia Polytechnic Institute and State University. Available Online: 10.1109/AERO.2009.4839512Google Scholar
  83. 83.
    Steiner N, Athanas P (2009) Hardware autonomy and space systems. In: Proceedings of the IEEE aerospace conference, pp 1–13Google Scholar
  84. 84.
    Strukov DB, Likharev KK (2005) CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16(6):888–900CrossRefGoogle Scholar
  85. 85.
    Sverdlov VA, Walls TJ, Likharev KK (2003) Nanoscale silicon MOSFETs: a theoretical study. IEEE Trans Electron Devices 50(9):1926–1933CrossRefGoogle Scholar
  86. 86.
    Tam S, Limaye RD, Desai UN (2004) Clock generation and distribution for the 130-nm Itanium 2 processor with 6-MB on-die L3 cache. IEEE J Solid State Circuits 39(4):636–642CrossRefGoogle Scholar
  87. 87.
    Trimberger SM (2008) Utilizing multiple test bitstreams to avoid localized defects in partially defective programmable integrated circuits. US Patent 7,424,655Google Scholar
  88. 88.
    Wang C, Hu Y, Lieber CM, Sun S (2008) Ultrathin Au nanowires and their transport properties. J Am Chem Soc 130: 8902–8903CrossRefGoogle Scholar
  89. 89.
    Wells RW, Ling ZM, Patrie RD, Tong VL, Cho J, Toutounchi S (2004) Applicationspecific testing methods for programmable logic devices. US Patent 6,817,006Google Scholar
  90. 90.
    Whang D, Jin S, Lieber CM (2003) Nanolithography using hierarchically assembled nanowire masks. Nanoletters 3(7):951–954Google Scholar
  91. 91.
    Whang D, Jin S, Wu Y, Lieber CM (2003) Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nanoletters 3(9):1255–1259Google Scholar
  92. 92.
    Williams S, Kuekes P (2001) Demultiplexer for a molecular wire crossbar network. US Patent 6,256,767Google Scholar
  93. 93.
    Wong JSJ, Sedcole P, Cheung PYK (2009) Self-measurement of combinatorial circuit delays in FPGAs. Trans Reconfig Technol Syst 2(2):1–22CrossRefGoogle Scholar
  94. 94.
    Wu W, Jung GY, Olynick D, Straznicky J, Li Z, Li X, Ohlberg D, Chen Y, Wang S-Y, Liddle J, Tong W, Williams RS (2005) One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography. Appl Phy A 80:1173–1178CrossRefGoogle Scholar
  95. 95.
    Xilinx, Inc. (2005) 2100 Logic Drive, San Jose, CA 95124 Xilinx Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet. DS083 http://direct.xilinx.com/bvdocs/publications/ds083.pdf
  96. 96.
    Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124 (2005) Virtex FPGA Series Configuration and Readback. XAPP 138 http://www.xilinx.com/bvdocs/appnotes/xapp138.pdf
  97. 97.
    Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124 (2008) Virtex-5 FPGA Configuration User Guide. UG191 http://www.xilinx.com/bvdocs/userguides/ug191.pdf
  98. 98.
    Yang C, Zhong Z, Lieber CM (2005) Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 310:1304–1307CrossRefGoogle Scholar
  99. 99.
    Yu G, Cao A, Lieber CM (2007) Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat Nanotechnol 2(6):372–377. doi: 10.1038/nnano.2007.150CrossRefGoogle Scholar
  100. 100.
    Zhao W, Cao Y (2006) New generation of predictive technology model for sub-45 nm early design exploration. IEEE Trans Electron Devices 53(11):2816–2823CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Benjamin Gojman
    • 1
  • Nikil Mehta
    • 2
  • Raphael Rubin
    • 1
  • André DeHon
    • 3
  1. 1.Department of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Computer ScienceCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Department of Electrical and Systems EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations