Skip to main content

Disease Progression Analysis: Towards Mechanism-Based Models

  • Chapter
  • First Online:
Book cover Clinical Trial Simulations

Abstract

Sustained disturbances of the biological homeostasis can result in chronic progressive diseases. The respective disease status as well as the corresponding effect of drug treatment on disease progression can be characterized at different levels of complexity, ranging from data-driven and descriptive to fully mechanistic approaches. Most of the currently employed disease progression models are mechanism-based and represent a mixture of these two extremes. Conceptually, mechanism-based disease progression models consist of three distinct parts: (1) a pharmacokinetic model to predict target exposure, (2) a pharmacodynamic model to characterize target binding, target activation, and transduction (receptor theory; dynamical system analysis), and (3) a disease model to characterize placebo response and disease progression. Once identified and validated, mechanism-based disease progression models can help understanding the behavior of the underlying disease system and, subsequently, support the identification of optimal dosing regimens using optimized clinical trial designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakris GL, Copley JB, Vicknair N, Sadler R, Leurgans S (1996) Calcium channel blockers versus other antihypertensive therapies on progression of NIDDM associated nephropathy. Kidney Int 50:1641–1650

    Article  PubMed  CAS  Google Scholar 

  • Bassingthwaighte JB (2000) Strategies for the physiome project. Ann Biomed Eng 28:1043–1058

    Article  PubMed  CAS  Google Scholar 

  • Bies RR, Gastonguay MR, Schwartz SL (2008) Mathematics for understanding disease. Clin Pharmacol Ther 83:904–908

    Article  PubMed  CAS  Google Scholar 

  • Bjorck S, Mulec H, Johnsen SA, Norden G, Aurell M (1992) Renal protective effect of enalapril in diabetic nephropathy. BMJ 304:339–343

    Article  PubMed  CAS  Google Scholar 

  • Boroujerdi MA, Umpleby AM, Jones RH, Sonksen PH (1995) A simulation model for glucose kinetics and estimates of glucose utilization rate in type 1 diabetic patients. Am J Physiol 268:E766–E774

    PubMed  CAS  Google Scholar 

  • Breimer DD, Danhof M (1997) Relevance of the application of pharmacokinetic-pharmacodynamic modelling concepts in drug development. The “wooden shoe” paradigm. Clin Pharmacokinet 32:259–267

    Article  PubMed  CAS  Google Scholar 

  • Butcher EC (2005) Can cell systems biology rescue drug discovery? Nat Rev Drug Discov 4:461–467

    Article  PubMed  CAS  Google Scholar 

  • Butcher EC, Berg EL, Kunkel EJ (2004) Systems biology in drug discovery. Nat Biotechnol 22:1253–1259

    Article  PubMed  CAS  Google Scholar 

  • Chan PL, Holford NH (2001) Drug treatment effects on disease progression. Annu Rev Pharmacol Toxicol 41:625–659

    Article  PubMed  CAS  Google Scholar 

  • Crepaldi G, Carta Q, Deferrari G, Mangili R, Navalesi R, Santeusanio F, Spalluto A, Vanasia A, Villa GM, Nosadini R (1998) Effects of lisinopril and nifedipine on the progression to overt albuminuria in IDDM patients with incipient nephropathy and normal blood pressure. The Italian Microalbuminuria Study Group in IDDM. Diabetes Care 21:104–110

    Article  PubMed  CAS  Google Scholar 

  • Danhof M, Alvan G, Dahl SG, Kuhlmann J, Paintaud G (2005) Mechanism-based pharmacokinetic-pharmacodynamic modeling – a new classification of biomarkers. Pharm Res 22:1432–1437

    Article  PubMed  CAS  Google Scholar 

  • Danhof M, de Jongh J, De Lange EC, Della Pasqua O, Ploeger BA, Voskuyl RA (2007) Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol 47:357–400

    Article  PubMed  CAS  Google Scholar 

  • Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21:457–478

    Article  PubMed  CAS  Google Scholar 

  • de Winter W, DeJongh J, Post T, Ploeger B, Urquhart R, Moules I, Eckland D, Danhof M (2006) A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying Type 2 Diabetes Mellitus. J Pharmacokinet Pharmacodyn 33:313–343

    Article  PubMed  Google Scholar 

  • Derendorf H, Lesko LJ, Chaikin P, Colburn WA, Lee P, Miller R, Powell R, Rhodes G, Stanski D, Venitz J (2000) Pharmacokinetic/pharmacodynamic modeling in drug research and development. J Clin Pharmacol 40:1399–1418

    PubMed  CAS  Google Scholar 

  • Eddy DM, Schlessinger L (2003) Archimedes: a trial-validated model of diabetes. Diabetes Care 26:3093–3101

    Article  PubMed  Google Scholar 

  • FDA (2004) Innovation or stagnation: challenge and opportunity on the critical path to new medical products. March 2004 In: Challenges and opportunities report - March 2004. Available at: http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/CriticalPath Initiative/CriticalPathOpportunitiesReports/UCM113411.pdf. Accessed: 12 October 2010.

  • Frey N, Laveille C, Paraire M, Francillard M, Holford NH, Jochemsen R (2003) Population PKPD modelling of the long-term hypoglycaemic effect of gliclazide given as a once-a-day modified release (MR) formulation. Br J Clin Pharmacol 55:147–157

    Article  PubMed  CAS  Google Scholar 

  • Friberg LE, de Greef R, Kerbusch T, Karlsson MO (2009) Modeling and simulation of the time course of asenapine exposure response and dropout patterns in acute schizophrenia. Clin Pharmacol Ther 86:84–91

    Article  PubMed  CAS  Google Scholar 

  • Gall MA, Nielsen FS, Smidt UM, Parving HH (1993) The course of kidney function in type 2 (non-insulin-dependent) diabetic patients with diabetic nephropathy. Diabetologia 36:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Gallagher DA, Schapira AH (2009) Etiopathogenesis and treatment of Parkinson’s disease. Curr Top Med Chem 9:860–868

    PubMed  CAS  Google Scholar 

  • Holford N, Nutt JG (2008) Disease progression, drug action and Parkinson’s disease: why time cannot be ignored. Eur J Clin Pharmacol 64:207–216

    Article  PubMed  Google Scholar 

  • Holford NH, Peace KE (1992) Methodologic aspects of a population pharmacodynamic model for cognitive effects in Alzheimer patients treated with tacrine. Proc Natl Acad Sci USA 89:11466–11470

    Article  PubMed  CAS  Google Scholar 

  • Holford NH, Sheiner LB (1982) Kinetics of pharmacologic response. Pharmacol Ther 16:143–166

    Article  PubMed  CAS  Google Scholar 

  • Hu C, Sale ME (2003) A joint model for nonlinear longitudinal data with informative dropout. J Pharmacokinet Pharmacodyn 30:83–103

    Article  PubMed  Google Scholar 

  • Hunter P, Nielsen P (2005) A strategy for integrative computational physiology. Physiology (Bethesda) 20:316–325

    Article  CAS  Google Scholar 

  • Hunter P, Smith N, Fernandez J, Tawhai M (2005) Integration from proteins to organs: the IUPS Physiome Project. Mech Ageing Dev 126:187–192

    Article  PubMed  CAS  Google Scholar 

  • Jones RH, Sonksen PH, Boroujerdi MA, Carson ER (1984) Number and affinity of insulin receptors in intact human subjects. Diabetologia 27:207–211

    PubMed  CAS  Google Scholar 

  • Karlsson MO, Holford N (2008) A tutorial on visual predictive checks. PAGE, Marseille

    Google Scholar 

  • Khan A, Leventhal RM, Khan SR, Brown WA (2002) Severity of depression and response to antidepressants and placebo: an analysis of the Food and Drug Administration database. J Clin Psychopharmacol 22:40–45

    Article  PubMed  Google Scholar 

  • Kimko HC, Reele SS, Holford NH, Peck CC (2000) Prediction of the outcome of a phase 3 clinical trial of an antischizophrenic agent (quetiapine fumarate) by simulation with a population pharmacokinetic and pharmacodynamic model. Clin Pharmacol Ther 68:568–577

    Article  PubMed  CAS  Google Scholar 

  • Lalonde RL, Kowalski KG, Hutmacher MM, Ewy W, Nichols DJ, Milligan PA, Corrigan BW, Lockwood PA, Marshall SA, Benincosa LJ, Tensfeldt TG, Parivar K, Amantea M, Glue P, Koide H, Miller R (2007) Model-based drug development. Clin Pharmacol Ther 82:21–32

    Article  PubMed  CAS  Google Scholar 

  • Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ (2004) Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J Theor Biol 229:293–309

    Article  PubMed  CAS  Google Scholar 

  • LeRoith D (2002) Beta-cell dysfunction and insulin resistance in type 2 diabetes: role of metabolic and genetic abnormalities. Am J Med 113(Suppl 6A):3S–11S

    Article  PubMed  CAS  Google Scholar 

  • Lesko LJ, Atkinson AJ Jr (2001) Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol 41:347–366

    Article  PubMed  CAS  Google Scholar 

  • Lewiecki EM, Miller PD, McClung MR, Cohen SB, Bolognese MA, Liu Y, Wang A, Siddhanti S, Fitzpatrick LA (2007) Two-year treatment with denosumab (AMG 162) in a randomized phase 2 study of postmenopausal women with low BMD. J Bone Miner Res 22:1832–1841

    Article  PubMed  CAS  Google Scholar 

  • Lewis EJ, Hunsicker LG, Bain RP, Rohde RD (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 329:1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Lima JJ, Matsushima N, Kissoon N, Wang J, Sylvester JE, Jusko WJ (2004) Modeling the metabolic effects of terbutaline in beta2-adrenergic receptor diplotypes. Clin Pharmacol Ther 76:27–37

    Article  PubMed  CAS  Google Scholar 

  • Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  PubMed  CAS  Google Scholar 

  • McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, Peacock M, Miller PD, Lederman SN, Chesnut CH, Lain D, Kivitz AJ, Holloway DL, Zhang C, Peterson MC, Bekker PJ (2006) Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354:821–831

    Article  PubMed  CAS  Google Scholar 

  • Miller R, Ewy W, Corrigan BW, Ouellet D, Hermann D, Kowalski KG, Lockwood P, Koup JR, Donevan S, El-Kattan A, Li CS, Werth JL, Feltner DE, Lalonde RL (2005) How modeling and simulation have enhanced decision making in new drug development. J Pharmacokinet Pharmacodyn 32:185–197

    Article  PubMed  Google Scholar 

  • Monzillo LU, Hamdy O (2003) Evaluation of insulin sensitivity in clinical practice and in research settings. Nutr Rev 61:397–412

    Article  PubMed  Google Scholar 

  • Mould DR, Denman NG, Duffull S (2007) Using disease progression models as a tool to detect drug effect. Clin Pharmacol Ther 82:81–86

    Article  PubMed  CAS  Google Scholar 

  • Parving HH, Rossing P, Hommel E, Smidt UM (1995) Angiotensin-converting enzyme inhibition in diabetic nephropathy: ten years’ experience. Am J Kidney Dis 26:99–107

    Article  PubMed  CAS  Google Scholar 

  • Peterson MC, Riggs MM (2010) A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone 46:49–63

    Article  PubMed  CAS  Google Scholar 

  • Ploeger BA, Holford NH (2009) Washout and delayed start designs for identifying disease modifying effects in slowly progressive diseases using disease progression analysis. Pharm Stat 8:225–238

    Article  PubMed  Google Scholar 

  • Ploeger BA, van der Graaf PH, Danhof M (2009) Incorporating receptor theory in mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling. Drug Metab Pharmacokinet 24:3–15

    Article  PubMed  CAS  Google Scholar 

  • Post TM (2009) Disease system analysis: between complexity and (over) simplification. Department of Pharmacology, Leiden University, Leiden, pp 148–189

    Google Scholar 

  • Post TM, Freijer JI, DeJongh J, Danhof M (2005) Disease system analysis: basic disease progression models in degenerative disease. Pharm Res 22:1038–1049

    Article  PubMed  CAS  Google Scholar 

  • Rix M, Andreassen H, Eskildsen P, Langdahl B, Olgaard K (1999) Bone mineral density and biochemical markers of bone turnover in patients with predialysis chronic renal failure. Kidney Int 56:1084–1093

    Article  PubMed  CAS  Google Scholar 

  • Rolan P, Danhof M, Stanski D, Peck C (2007) Current issues relating to drug safety especially with regard to the use of biomarkers: a meeting report and progress update. Eur J Pharm Sci 30:107–112

    Article  PubMed  CAS  Google Scholar 

  • Rowland M, Balant L, Peck C (2004) Physiologically based pharmacokinetics in drug development and regulatory science: a workshop report (Georgetown University, Washington, DC, May 29–30, 2002). AAPS Pharm Sci 6:E6

    Article  PubMed  Google Scholar 

  • Santen G, Horrigan J, Danhof M, Della Pasqua O (2009a) From trial and error to trial simulation. Part 2: an appraisal of current beliefs in the design and analysis of clinical trials for antidepressant drugs. Clin Pharmacol Ther 86:255–262

    Article  PubMed  CAS  Google Scholar 

  • Santen G, van Zwet E, Danhof M, Della Pasqua O (2009b) From trial and error to trial simulation. Part 1: the importance of model-based drug development for antidepressant drugs. Clin Pharmacol Ther 86:248–254

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Bhattaram AV, Jadhav PR, Lesko LJ, Madabushi R, Powell JR, Qiu W, Sun H, Yim DS, Zheng JJ, Gobburu JV (2008) Leveraging prior quantitative knowledge to guide drug development decisions and regulatory science recommendations: impact of FDA pharmacometrics during 2004–2006. J Clin Pharmacol 48:146–156

    Article  PubMed  CAS  Google Scholar 

  • Welge JA, Keck PE Jr (2003) Moderators of placebo response to antipsychotic treatment in patients with schizophrenia: a meta-regression. Psychopharmacology (Berl) 166:1–10

    CAS  Google Scholar 

  • Zhang L, Sinha V, Forgue ST, Callies S, Ni L, Peck R, Allerheiligen SR (2006) Model-based drug development: the road to quantitative pharmacology. J Pharmacokinet Pharmacodyn 33:369–393

    Article  PubMed  CAS  Google Scholar 

  • Zuideveld KP, Maas HJ, Treijtel N, Hulshof J, van der Graaf PH, Peletier LA, Danhof M (2001) A set-point model with oscillatory behavior predicts the time course of 8-OH-DPAT-induced hypothermia. Am J Physiol Regul Integr Comp Physiol 281:R2059–R2071

    PubMed  CAS  Google Scholar 

  • Zuideveld KP, Van der Graaf PH, Newgreen D, Thurlow R, Petty N, Jordan P, Peletier LA, Danhof M (2004) Mechanism-based pharmacokinetic-pharmacodynamic modeling of 5-HT1A receptor agonists: estimation of in vivo affinity and intrinsic efficacy on body temperature in rats. J Pharmacol Exp Ther 308:1012–1020

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meindert Danhof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schmidt, S. et al. (2011). Disease Progression Analysis: Towards Mechanism-Based Models. In: Kimko, H., Peck, C. (eds) Clinical Trial Simulations. AAPS Advances in the Pharmaceutical Sciences Series, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7415-0_19

Download citation

Publish with us

Policies and ethics