Skip to main content

Application of Modeling and Simulation in the Development of Protein Drugs

  • Chapter
  • First Online:
Clinical Trial Simulations

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 1))

Abstract

Protein drugs have a variety of molecular characteristics, functional properties, and pharmacokinetic characteristics that are uniquely different from small molecule drugs. The pharmacokinetics of protein drugs are often intricately linked to the biology of the drug target and the pharmacological properties of the drug. Mechanistic PK-PD models can be built to describe these unique drug characteristics and simulate nonclinical and clinical outcomes. PK-PD modeling and simulation can be applied from the earliest stages of drug discovery to late-stage clinical development. The application of model-based drug discovery and development can improve the probability of successful development of protein drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman ME, Pawlowski D, Wittrup KD (2008) Effect of antigen turnover rate and expression level on antibody penetration into tumor spheroids. Mol Cancer Ther 7:2233–2240

    Article  PubMed  CAS  Google Scholar 

  • Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK et al (2001) High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 61:4750–4755

    PubMed  CAS  Google Scholar 

  • Agoram BM (2009) Use of pharmacokinetic/pharmacodynamic modelling for starting dose selection in first-in-human trials of high-risk biologics. Br J Clin Pharmacol 67:153–160

    Article  PubMed  CAS  Google Scholar 

  • Allegaert K, Anderson BJ, Naulaers G, de Hoon J, Verbesselt R, Debeer A et al (2004) Intravenous paracetamol (propacetamol) pharmacokinetics in term and preterm neonates. Eur J Clin Pharmacol 60:191–197

    Article  PubMed  CAS  Google Scholar 

  • Anderson BJ, Holford NH (2008) Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol 48:303–332

    Article  PubMed  CAS  Google Scholar 

  • Anderson BJ, Woollard GA, Holford NH (2000) A model for size and age changes in the pharmacokinetics of paracetamol in neonates, infants and children. Br J Clin Pharmacol 50:125–134

    Article  PubMed  CAS  Google Scholar 

  • Bauer RJ, Gibbons JA, Bell DP, Luo ZP, Young JD (1994) Nonlinear pharmacokinetics of recombinant human macrophage colony-stimulating factor (M-CSF) in rats. J Pharmacol Exp Ther 268:152–158

    PubMed  CAS  Google Scholar 

  • Bauer RJ, Dedrick RL, White ML, Murray MJ, Garovoy MR (1999) Population pharmacokinetics and pharmacodynamics of the anti-CD11a antibody hu1124 in human subjects with psoriasis. J Pharmacokinet Biopharm 27:397–420

    Article  PubMed  CAS  Google Scholar 

  • Betts AM, Clark TH, Yang J, Treadway JL, Li M, Giovanelli MA et al (2010) The application of target information and preclinical pharmacokinetic/pharmacodynamic modeling in predicting clinical doses of a Dickkopf-1 antibody for osteoporosis. J Pharmacol Exp Ther 333:2–13

    Article  PubMed  CAS  Google Scholar 

  • Bruno R, Washington CB, Lu JF, Lieberman G, Banken L, Klein P (2005) Population pharmacokinetics of trastuzumab in patients with HER2+ metastatic breast cancer. Cancer Chemother Pharmacol 56:361–369

    Article  PubMed  CAS  Google Scholar 

  • Dall’Acqua WF, Woods RM, Ward ES, Palaszynski SR, Patel NK, Brewah YA et al (2002) Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences. J Immunol 169:5171–5180

    PubMed  Google Scholar 

  • Davda JP, Jain M, Batra SK, Gwilt PR, Robinson DH (2008) Int Immunopharmacol 8(3):401–413

    Google Scholar 

  • Dornhorst AC (1951) The interpretation of red cell survival curves. Blood 6:1284–1292

    PubMed  CAS  Google Scholar 

  • Eadie GS, Brown IW Jr (1953) Red blood cell survival studies. Blood 8:1110–1136

    PubMed  CAS  Google Scholar 

  • Ferl GZ, Wu AM, DiStefano JJ III (2005) A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng 33:1640–1652

    Article  PubMed  Google Scholar 

  • Galluppi GR, Rogge MC, Roskos LK, Lesko LJ, Green MD, Feigal DW Jr et al (2001) Integration of pharmacokinetic and pharmacodynamic studies in the discovery, development, and review of protein therapeutic agents: a conference report. Clin Pharmacol Ther 69:387–399

    Article  PubMed  CAS  Google Scholar 

  • Garg A, Balthasar JP (2007) Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34:687–709

    Article  PubMed  CAS  Google Scholar 

  • Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn 35:573–591

    Article  PubMed  CAS  Google Scholar 

  • Gueorguieva I, Clark SR, McMahon CJ, Scarth S, Rothwell NJ, Tyrrell PJ et al (2008) Pharmacokinetic modelling of interleukin-1 receptor antagonist in plasma and cerebrospinal fluid of patients following subarachnoid haemorrhage. Br J Clin Pharmacol 65:317–325

    Article  PubMed  CAS  Google Scholar 

  • Harker LA, Roskos LK, Marzec UM, Carter RA, Cherry JK, Sundell B et al (2000) Effects of megakaryocyte growth and development factor on platelet production, platelet life span, and platelet function in healthy human volunteers. Blood 95:2514–2522

    PubMed  CAS  Google Scholar 

  • Hayashi N, Tsukamoto Y, Sallas WM, Lowe PJ (2007) A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab. Br J Clin Pharmacol 63:548–561

    Article  PubMed  CAS  Google Scholar 

  • Johnston E, Crawford J, Blackwell S, Bjurstrom T, Lockbaum P, Roskos L et al (2000) Randomized, dose-escalation study of SD/01 compared with daily filgrastim in patients receiving chemotherapy. J Clin Oncol 18:2522–2528

    PubMed  CAS  Google Scholar 

  • Krzyzanski W, Ramakrishnan R, Jusko WJ (1999) Basic pharmacodynamic models for agents that alter production of natural cells. J Pharmacokinet Biopharm 27:467–489

    Article  PubMed  CAS  Google Scholar 

  • Krzyzanski W, Jusko WJ, Wacholtz MC, Minton N, Cheung WK (2005) Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after multiple subcutaneous doses in healthy subjects. Eur J Pharm Sci 26:295–306

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara T, Kobayashi S, Sugiyama Y (1996) Pharmacokinetics and pharmacodynamics of a recombinant human granulocyte colony-stimulating factor. Drug Metab Rev 28:625–658

    Article  PubMed  CAS  Google Scholar 

  • Lau Y, Wang B, Faggioni R, Lu H, Gross R, Wang Y et al (2010) Mechanistic pharmacokinetic-pharmacodynamic modeling of MEDI-551, a humanized IgG1 against CD19, for first-in-human starting dose recommendation. Clin Pharmacol Ther 87(Suppl 1):S58

    Google Scholar 

  • Leyland-Jones B, Colomer R, Trudeau ME, Wardley A, Latreille J, Cameron D et al (2010) Intensive loading dose of trastuzumab achieves higher-than-steady-state serum concentrations and is well tolerated. J Clin Oncol 28:960–966

    Article  PubMed  CAS  Google Scholar 

  • Lote CJ (2000) Principles of renal physiology, 4th edn. Kluwer Academic Publishers), London

    Book  Google Scholar 

  • Lowe PJ, Tannenbaum S, Gautier A, Jimenez P (2009) Relationship between omalizumab pharmacokinetics, IgE pharmacodynamics and symptoms in patients with severe persistent allergic (IgE-mediated) asthma. Br J Clin Pharmacol 68:61–76

    Article  PubMed  CAS  Google Scholar 

  • Lowe PJ, Tannenbaum S, Wu K, Lloyd P, Sims J (2010) On setting the first dose in man: quantitating biotherapeutic drug-target binding through pharmacokinetic and pharmacodynamic models. Basic Clin Pharmacol Toxicol 106:195–209

    Article  PubMed  CAS  Google Scholar 

  • Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28:507–532

    Article  PubMed  CAS  Google Scholar 

  • Mager DE, Krzyzanski W (2005) Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res 22:1589–1596

    Google Scholar 

  • Mahmood I, Green MD (2007) Drug interaction studies of therapeutic proteins or monoclonal antibodies. J Clin Pharmacol 47:1540–1554

    Article  PubMed  CAS  Google Scholar 

  • Marathe A, Krzyzanski W, Mager DE (2009) Numerical validation and properties of a rapid binding approximation of a target-mediated drug disposition pharmacokinetic model. J Pharmacokinet Pharmacodyn 36:199–219

    Article  PubMed  CAS  Google Scholar 

  • Mizuno N, Kato Y, Iwamoto M, Urae A, Amamoto T, Niwa T et al (2001) Kinetic analysis of the disposition of insulin-like growth factor 1 in healthy volunteers. Pharm Res 18:1203–1209

    Article  PubMed  CAS  Google Scholar 

  • Ober RJ, Radu CG, Ghetie V, Ward ES (2001) Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol 13:1551–1559

    Article  PubMed  CAS  Google Scholar 

  • Oh CK, Faggioni R, Jin F, Roskos LK, Wang B, Birrel C et al (2010) An open-label, single-dose bioavailability study of the pharmacokinetics of CAT-354 after subcutaneous and intravenous administration in healthy males. Br J Clin Pharmacol 69:645–655

    Article  PubMed  CAS  Google Scholar 

  • Pentsuk N, van der Laan JW (2009) An interspecies comparison of placental antibody transfer: new insights into developmental toxicity testing of monoclonal antibodies. Birth Defects Res B Dev Reprod Toxicol 86:328–344

    Article  PubMed  CAS  Google Scholar 

  • Poulin P, Theil FP (2000) A priori prediction of tissue: plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci 89:16–35

    Article  PubMed  CAS  Google Scholar 

  • Poulin P, Theil FP (2002) Prediction of pharmacokinetics prior to in vivo studies. II. Generic physiologically based pharmacokinetic models of drug disposition. J Pharm Sci 91:1358–1370

    Article  PubMed  CAS  Google Scholar 

  • Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7:715–725

    Article  PubMed  CAS  Google Scholar 

  • Roskos LK, Stead R, Harker L, Cheung EN (1997) A cytokinetic model of platelet production and destruction following administration of peg-rhuMGDF. Blood 90:171

    Google Scholar 

  • Roskos LK, Lum P, Lockbaum P, Schwab G, Yang BB (2006) Pharmacokinetic/pharmacodynamic modeling of pegfilgrastim in healthy subjects. J Clin Pharmacol 46:747–757

    Article  PubMed  CAS  Google Scholar 

  • Roskos LK, Klakamp S, Liang M, Arends R, Green L (2007) Molecular engineering II: antibody affinity. In: Dubel S (ed) Handbook of therapeutic antibodies, 1st edn. Wiley-VCH, Weinheim, pp 145–170

    Chapter  Google Scholar 

  • Royer B, Yin W, Pegram M, Ibrahim N, Villanueva C, Mir D et al (2010) Population pharmacokinetics of the humanised monoclonal antibody, HuHMFG1 (AS1402), derived from a phase I study on breast cancer. Br J Cancer 102:827–832

    Article  PubMed  CAS  Google Scholar 

  • Savic RM, Jonker DM, Kerbusch T, Karlsson MO (2007) Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn 34:711–726

    Article  PubMed  CAS  Google Scholar 

  • Segel IH (1993) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady state enzyme systems. Wiley, New York

    Google Scholar 

  • Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD et al (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355:1018–1028

    Article  PubMed  CAS  Google Scholar 

  • Supersaxo A, Hein W, Gallati H, Steffen H (1988) Recombinant human interferon alpha-2a: delivery to lymphoid tissue by selected modes of application. Pharm Res 5:472–476

    Article  PubMed  CAS  Google Scholar 

  • Supersaxo A, Hein WR, Steffen H (1990) Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res 7:167–169

    Article  PubMed  CAS  Google Scholar 

  • Tabrizi MA, Roskos LK (2007) Preclinical and clinical safety of monoclonal antibodies. Drug Discov Today 12:540–547

    Article  PubMed  CAS  Google Scholar 

  • Toon S (1996) The relevance of pharmacokinetics in the development of biotechnology products. Eur J Drug Metab Pharmacokinet 21(2):93–103

    Google Scholar 

  • Uehlinger DE, Gotch FA, Sheiner LB (1992) A pharmacodynamic model of erythropoietin therapy for uremic anemia. Clin Pharmacol Ther 51:76–89

    Article  PubMed  CAS  Google Scholar 

  • Urva SR, Yang VC, Balthasar JP (2010) Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody. J Pharm Sci 99:1582–1600

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Ludden TM, Cheung EN, Schwab GG, Roskos LK (2001) Population pharmacokinetic-pharmacodynamic modeling of filgrastim (r-metHuG-CSF) in healthy volunteers. J Pharmacokinet Pharmacodyn 28:321–342

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Wang EQ, Balthasar JP (2008) Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 84:548–558

    Article  PubMed  CAS  Google Scholar 

  • Wang DD, Zhang S, Zhao H, Men AY, Parivar K (2009) Fixed dosing versus body size-based dosing of monoclonal antibodies in adult clinical trials. J Clin Pharmacol 49:1012–1024

    Article  PubMed  CAS  Google Scholar 

  • Weinstein JN, van Osdol W (1992) The macroscopic and microscopic pharmacology of monoclonal antibodies. Int J Immunopharmacol 14:457–463

    Article  PubMed  CAS  Google Scholar 

  • Wiczling P, Rosenzweig M, Vaickus L, Jusko WJ (2010) Pharmacokinetics and pharmacodynamics of a chimeric/humanized anti-CD3 monoclonal antibody, otelixizumab (TRX4), in subjects with psoriasis and with type 1 diabetes mellitus. J Clin Pharmacol 50:494–506

    Article  PubMed  CAS  Google Scholar 

  • Woo S, Jusko WJ (2007) Interspecies comparisons of pharmacokinetics and pharmacodynamics of recombinant human erythropoietin. Drug Metab Dispos 35:1672–1678

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Mager DE, Krzyzanski W (2010) Selection between Michaelis–Menten and target-mediated drug disposition pharmacokinetic models. J Pharmacokinet Pharmacodyn 37:25–47

    Article  PubMed  CAS  Google Scholar 

  • Yang BB, Lum PK, Hayashi MM, Roskos LK (2004) Polyethylene glycol modification of filgrastim results in decreased renal clearance of the protein in rats. J Pharm Sci 93:1367–1373

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Roskos L, Griffin P, Losonsky GA, Groothius JR, Jallal B, Robbie GJ (2010) Population pharmacokinetics analysis of motavizumab in children at risk for RSV infection. Pediatric Academic Societies (PAS) annual meeting, Vancouver, Canada

    Google Scholar 

  • Zhou H, Davis HM (2009) Risk-based strategy for the assessment of pharmacokinetic drug-drug interactions for therapeutic monoclonal antibodies. Drug Discov Today 14:891–898

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Hu C, Lu M, Liao S, Marini JC, Yohrling J et al (2009) Population pharmacokinetic modeling of ustekinumab, a human monoclonal antibody targeting IL-12/23p40, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol 49:162–175

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorin K. Roskos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roskos, L.K., Ren, S., Robbie, G. (2011). Application of Modeling and Simulation in the Development of Protein Drugs. In: Kimko, H., Peck, C. (eds) Clinical Trial Simulations. AAPS Advances in the Pharmaceutical Sciences Series, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7415-0_17

Download citation

Publish with us

Policies and ethics