Skip to main content

A Model-Based PK/PD Antimicrobial Chemotherapy Drug Development Platform to Simultaneously Combat Infectious Diseases and Drug Resistance

  • Chapter
  • First Online:

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 1))

Abstract

The impact of antibiotics on health care likely exceeds that of any other class of drugs by greatly reducing the likelihood of debilitating disease and/or death prevalent in the preantibiotic era. However, the coincidence of (1) medicinal chemists’ continuing struggle to produce druggable antibiotics with novel targets that overcome emergence of drug resistance altogether, (2) the general decline of active development of new antimicrobial agents, (3) the prevalence (and growth because of increased use) of antimicrobial resistance to legacy molecules, and (4) the ever-present threat of bioterrorism, mean that antibiotic drug development must necessarily focus on resistance counter-measures throughout the discovery and development process. Thus, in essence, antiinfective discovery and development programs are (or should be) intrinsically charged with the combined responsibility of minimization of resistance selection and targeting drug resistant infections from the outset.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen MC, Shah TS, Day WW (1998) Rapid determination of oral pharmacokinetics and plasma free fraction using cocktail approaches: methods and application. Pharm Res 15(1):93–97

    CAS  PubMed  Google Scholar 

  • Alonso A, Campanario E, Martinez JL (1999) Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. Microbiology 145(Pt 10):2857–2862

    CAS  PubMed  Google Scholar 

  • Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, Drusano GL (2007) Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis 44(1):79–86

    CAS  PubMed  Google Scholar 

  • Ambrose PG, Grasela DM, Grasela TH, Passarell J, Mayer HB, Pierce PF (2001) Pharmacodynamics of fluoroquinolones against Streptococcus pneumoniae in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother 45(10):2793–2797

    CAS  PubMed  Google Scholar 

  • Andes DR, Craig WA (1999) Pharmacokinetics and pharmacodynamics of antibiotics in meningitis. Infect Dis Clin North Am 13(3):595–618

    CAS  PubMed  Google Scholar 

  • Andes D, Stamsted T, Conklin R (2001) Pharmacodynamics of amphotericin B in a neutropenic-mouse disseminated-candidiasis model. Antimicrob Agents Chemother 45(3):922–926

    CAS  PubMed  Google Scholar 

  • Ariano RE, Nyhlen A, Donnelly JP, Sitar DS, Harding GK, Zelenitsky SA (2005) Pharmacokinetics and pharmacodynamics of meropenem in febrile neutropenic patients with bacteremia. Ann Pharmacother 39(1):32–38

    CAS  PubMed  Google Scholar 

  • Barclay ML, Begg EJ (2001) Aminoglycoside adaptive resistance: importance for effective dosage regimens. Drugs 61(6):713–721

    CAS  PubMed  Google Scholar 

  • Beaber JW, Hochhut B, Waldor MK (2004) SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427(6969):72–74

    CAS  PubMed  Google Scholar 

  • Bermejo Martin JF, Jimenez JL, Munoz-Fernandez A (2003) Pentoxifylline and severe acute respiratory syndrome (SARS): a drug to be considered. Med Sci Monit 9(6):SR29–SR34

    CAS  PubMed  Google Scholar 

  • Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95

    Google Scholar 

  • Black JW, Leff P, Shankley NP (1985) An operational model of pharmacological agonism: the effect of E/[A] curve shape on agonist dissociation constant estimation. Br J Pharmacol 84(2):561–571

    CAS  PubMed  Google Scholar 

  • Blaser J, Stone BB, Zinner SH (1985) Efficacy of intermittent versus continuous administration of netilmicin in a two-compartment in vitro model. Antimicrob Agents Chemother 27(3):343–349

    CAS  PubMed  Google Scholar 

  • Boik JC, Newman RA, Boik RJ (2008) Quantifying synergism/antagonism using nonlinear mixed-effects modeling: a simulation study. Stat Med 27(7):1040–1061

    PubMed  Google Scholar 

  • Boshoff HI, Reed MB, Barry CE III, Mizrahi V (2003) DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell 113(2):183–193

    CAS  PubMed  Google Scholar 

  • Boucher AN, Tam VH (2006) Mathematical formulation of additivity for antimicrobial agents. Diagn Microbiol Infect Dis 55(4):319–325

    CAS  PubMed  Google Scholar 

  • Bradley JS, Dudley MN, Drusano GL (2003) Predicting efficacy of antiinfectives with pharmacodynamics and Monte Carlo simulation. Pediatr Infect Dis J 22(11):982–992; quiz 993–985

    Google Scholar 

  • Bull JJ, Levin BR, DeRouin T, Walker N, Bloch CA (2002) Dynamics of success and failure in phage and antibiotic therapy in experimental infections. BMC Microbiol 2:35

    CAS  PubMed  Google Scholar 

  • Cappelletty DM, Rybak MJ (1996) Comparison of methodologies for synergism testing of drug combinations against resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 40(3):677–683

    CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2006) Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs – worldwide, 2000–2004. MMWR Morb Mortal Wkly Rep 55(11):301–305

    Google Scholar 

  • Chambers HF, Kennedy S (1990) Effects of dosage, peak and trough concentrations in serum, protein binding, and bactericidal rate on efficacy of teicoplanin in a rabbit model of endocarditis. Antimicrob Agents Chemother 34(4):510–514

    CAS  PubMed  Google Scholar 

  • Chen YH, Peng CF, Lu PL, Tsai JJ, Chen TP (2004) In vitro activities of antibiotic combinations against clinical isolates of Pseudomonas aeruginosa. Kaohsiung J Med Sci 20(6):261–267

    CAS  PubMed  Google Scholar 

  • Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260

    CAS  PubMed  Google Scholar 

  • Chung P, McNamara PJ, Campion JJ, Evans ME (2006) Mechanism-based pharmacodynamic models of fluoroquinolone resistance in Staphylococcus aureus. Antimicrob Agents Chemother 50(9):2957–2965

    CAS  PubMed  Google Scholar 

  • Cirz RT, Chin JK, Andes DR, de Crecy-Lagard V, Craig WA, Romesberg FE (2005) Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol 3(6):e176

    PubMed  Google Scholar 

  • Cirz RT, Romesberg FE (2006) Induction and inhibition of ciprofloxacin resistance-conferring mutations in hypermutator bacteria. Antimicrob Agents Chemother 50(1):220–225

    CAS  PubMed  Google Scholar 

  • Coates A, Hu Y, Bax R, Page C (2002) The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov 1(11):895–910

    CAS  PubMed  Google Scholar 

  • Colburn WA (2000) Optimizing the use of biomarkers, surrogate endpoints, and clinical endpoints for more efficient drug development. J Clin Pharmacol 40(12 Pt 2):1419–1427

    CAS  PubMed  Google Scholar 

  • Craig WA (1998a) Choosing an antibiotic on the basis of pharmacodynamics. Ear Nose Throat J 77(6 Suppl):7–11; discussion 11–12

    Google Scholar 

  • Craig WA (1998b) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26(1):1–10; quiz 11–12

    Google Scholar 

  • Craig WA, Ebert SC (1990) Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis Suppl 74:63–70

    CAS  PubMed  Google Scholar 

  • Craig WA, Redington J, Ebert SC (1991) Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J Antimicrob Chemother 27(Suppl):S29–S40

    Google Scholar 

  • Dagan R (2003) Achieving bacterial eradication using pharmacokinetic/pharmacodynamic principles. Int J Infect Dis 7(Suppl 1):S21–S26

    PubMed  Google Scholar 

  • Dalla Costa T, Derendorf H (1996) AUIC – a general target for the optimization of dosing regimens of antibiotics? Ann Pharmacother 30(9):1024–1028

    CAS  PubMed  Google Scholar 

  • Dalla Costa T, Nolting A, Rand K, Derendorf H (1997) Pharmacokinetic-pharmacodynamic modelling of the in vitro antiinfective effect of piperacillin-tazobactam combinations. Int J Clin Pharmacol Ther 35(10):426–433

    CAS  PubMed  Google Scholar 

  • Davies J (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375–382

    CAS  PubMed  Google Scholar 

  • Davis BD, Maas WK (1952) Analysis of the biochemical mechanism of drug resistance in certain bacterial mutants. Proc Natl Acad Sci USA 38(9):775–785

    CAS  PubMed  Google Scholar 

  • Dean CR, Visalli MA, Projan SJ, Sum PE, Bradford PA (2003) Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 47:972–978

    CAS  PubMed  Google Scholar 

  • Deshpande D, Srivastava S, Meek C, Leff R, Hall GS, Gumbo T (2010) Moxifloxacin pharmacokinetics/pharmacodynamics and optimal dose and susceptibility breakpoint identification for the treatment of disseminated Mycobacterium avium infection. Antimicrob Agents Chemother 54:2534–2539

    CAS  PubMed  Google Scholar 

  • Drlica K, Zhao X (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61(3):377–392

    CAS  PubMed  Google Scholar 

  • Drusano GL (1990) Human pharmacodynamics of beta-lactams, aminoglycosides and their combination. Scand J Infect Dis Suppl 74:235–248

    CAS  PubMed  Google Scholar 

  • Drusano GL (1998a) Factors influencing the emergence of resistance to indinavir: role of virologic, immunologic, and pharmacologic variables. J Infect Dis 178:360–367

    CAS  PubMed  Google Scholar 

  • Drusano GL (1998b) Infection in the intensive care unit: beta-lactamase-mediated resistance among Enterobacteriaceae and optimal antimicrobial dosing. Clin Infect Dis 27(Suppl1):S111–S116

    CAS  PubMed  Google Scholar 

  • Drusano GL (2001) Use of preclinical data for the choice of a Phase II/III dose for evernimicin with application to decision support for identification of a preclinical MIC breakpoint. Antimicrob Agents Chemother 45:13–22

    CAS  PubMed  Google Scholar 

  • Drusano GL (2004) Antimicrobial pharmacodynamics: critical interactions of “bug and drug”. Nat Rev Microbiol 2(4):289–300

    CAS  PubMed  Google Scholar 

  • Drusano GL, Johnson DE, Rosen M, Standiford HC (1993) Pharmacodynamics of a fluoroquinolone antimicrobial agent in a neutropenic rat model of Pseudomonas sepsis. Antimicrob Agents Chemother 37(3):483–490

    CAS  PubMed  Google Scholar 

  • Drusano GL, Prichard M, Bilello PA, Bilello JA (1996) Modeling combinations of antiretroviral agents in vitro with integration of pharmacokinetics: guidance in regimen choice for clinical trial evaluation. Antimicrob Agents Chemother 40(5):1143–1147

    CAS  PubMed  Google Scholar 

  • Drusano GL, D’Argenio DZ, Preston SL, Barone C, Symonds W, LaFon S, Rogers M, Prince W, Bye A, Bilello JA (2000) Use of drug effect interaction modeling with Monte Carlo simulation to examine the impact of dosing interval on the projected antiviral activity of the combination of abacavir and amprenavir. Antimicrob Agents Chemother 44(6):1655–1659

    CAS  PubMed  Google Scholar 

  • Drusano GL, Moore KHP, Kleim JP, Prince W, Bye A (2002) Rational dose selection for a non-nucleoside reverse transcriptase inhibitor through the use of population pharmacokinetic modeling and Monte Carlo simulation. Antimicrob Agents Chemother 46:913–916

    CAS  PubMed  Google Scholar 

  • Drusano GL, Preston SL, Fowler C, Corrado M, Weisinger B, Kahn J (2004) Relationship between fluoroquinolone area under the curve: minimum inhibitory concentration ratio and the probability of eradication of the infecting pathogen, in patients with nosocomial pneumonia. J Infect Dis 189(9):1590–1597

    CAS  PubMed  Google Scholar 

  • Drusano GL, Louie A, Deziel M, Gumbo T (2006) The crisis of resistance: identifying drug exposures to suppress amplification of resistant mutant subpopulations. Clin Infect Dis 42(4):525–532

    CAS  PubMed  Google Scholar 

  • Drusano GL, Liu W, Brown DL, Rice LB, Louie A (2009) Impact of short-course quinolone therapy on susceptible and resistant populations of Staphylococcus aureus. J Infect Dis 199(2):219–226

    CAS  PubMed  Google Scholar 

  • Dudley MN, Ambrose PG. Monte Carlo PK-PD Simulation and New Cefotaxime (CTX), Ceftriaxone (CRO), and Cefepime (FEP) Susceptibility Breakpoints for S. pneumoniae, including Strains with Reduced Susceptibility to Penicillin. Abstr Intersci Conf Antimicrob Agents Chemother Intersci Conf Antimicrob Agents Chemother. 2002 Sep 27–30; 42: abstract no. A-635. Interscience Conference on Antimicrobial Agents and Chemotherapy (42nd: 2002: San Diego, Calif.)

    Google Scholar 

  • Eagle H (1948) The paradoxically retarded bactericidal activity of penicillin at high concentrations in vitro and in vivo. J Clin Invest 27(4):531

    CAS  PubMed  Google Scholar 

  • Eagle H (1949) The effect of the size of the inoculum and the age of the infection on the curative dose of penicillin in experimental infections with streptococci, pneumococci, and Treponema pallidum. J Exp Med 90(6):595–607

    CAS  PubMed  Google Scholar 

  • Eagle H (1952) Experimental approach to the problem of treatment failure with penicillin. I. Group A streptococcal infection in mice. Am J Med 13(4):389–399

    CAS  PubMed  Google Scholar 

  • Eagle H (1954) The multiple mechanisms of penicillin resistance. J Bacteriol 68(5):610–616

    CAS  PubMed  Google Scholar 

  • Eagle H (1955) The mechanism of action of penicillin. J Lancet 75(1):1–6

    CAS  PubMed  Google Scholar 

  • Eagle H, Fleischman R, Levy M (1953a) Continuous vs. discontinuous therapy with penicillin; the effect of the interval between injections on therapeutic efficacy. N Engl J Med 248(12):481–488

    CAS  PubMed  Google Scholar 

  • Eagle H, Fleischman R, Levy M (1953b) On the duration of penicillin action in relation to its concentration in the serum. J Lab Clin Med 41(1):122–132

    CAS  PubMed  Google Scholar 

  • Ernst EJ, Klepser ME, Petzold CR, Doern GV (2002) Evaluation of survival and pharmacodynamic relationships for five fluoroquinolones in a neutropenic murine model of pneumococcal lung infection. Pharmacotherapy 22(4):463–470

    CAS  PubMed  Google Scholar 

  • Fidler M, Kern SE (2006) Flexible interaction model for complex interactions of multiple anesthetics. Anesthesiology 105(2):286–296

    PubMed  Google Scholar 

  • Firsov AA, Shevchenko AA, Vostrov SN, Zinner SH (1998) Inter- and intraquinolone predictors of antimicrobial effect in an in vitro dynamic model: new insight into a widely used concept. Antimicrob Agents Chemother 42(3):659–665

    CAS  PubMed  Google Scholar 

  • Firsov AA, Vasilov RG, Vostrov SN, Kononenko OV, Lubenko IY, Zinner SH (1999) Prediction of the antimicrobial effects of trovafloxacin and ciprofloxacin on staphylococci using an in vitro dynamic model. J Antimicrob Chemother 43(4):483–490

    CAS  PubMed  Google Scholar 

  • Fish DN, Piscitelli SC, Danziger LH (1995) Development of resistance during antimicrobial therapy: a review of antibiotic classes and patient characteristics in 173 studies. Pharmacotherapy 15(3):279–291

    CAS  PubMed  Google Scholar 

  • Frimodt-Moller N (2002) How predictive is PK/PD for antibacterial agents? Int J Antimicrob Agents 19(4):333–339

    CAS  PubMed  Google Scholar 

  • Giamarellou H (1986) Aminoglycosides plus beta-lactams against gram-negative organisms. Evaluation of in vitro synergy and chemical interactions. Am J Med 80(6B):126–137

    CAS  PubMed  Google Scholar 

  • Gniadkowski M (2008) Evolution of extended-spectrum beta-lactamases by mutation. Clin Microbiol Infect 14(Suppl 1):11–32

    CAS  PubMed  Google Scholar 

  • Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, Maire P (2008) The Hill equation: a review of its capabilities in pharmacological modelling. Fundam Clin Pharmacol 22(6):633–648

    CAS  PubMed  Google Scholar 

  • Greco WR, Park HS, Rustum YM (1990) Application of a new approach for the quantitation of drug synergism to the combination of cis-diamminedichloroplatinum and 1-beta-D-arabinofuranosylcytosine. Cancer Res 50(17):5318–5327

    CAS  PubMed  Google Scholar 

  • Gross M, Burli R, Jones P, Garcia M, Batiste B, Kaizerman J, Moser H, Jiang V, Hoch U, Duan JX, Tanaka R, Johnson KW (2003) Pharmacology of novel heteroaromatic polycycle antibacterials. Antimicrob Agents Chemother 47(11):3448–3457

    CAS  PubMed  Google Scholar 

  • Guerillot F, Carret G, Flandrois JP (1993) Mathematical model for comparison of time-killing curves. Antimicrob Agents Chemother 37(8):1685–1689

    CAS  PubMed  Google Scholar 

  • Gumbo T, Louie A, Deziel MR, Drusano GL (2005) Pharmacodynamic evidence that ciprofloxacin failure against tuberculosis is not due to poor microbial kill but to rapid emergence of resistance. Antimicrob Agents Chemother 49(8):3178–3181

    CAS  PubMed  Google Scholar 

  • Gumbo T, Louie A, Deziel MR, Liu W, Parsons LM, Salfinger M, Drusano GL (2007) Concentration-dependent Mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother 51(11):3781–3788

    CAS  PubMed  Google Scholar 

  • Hawser SP (2006) Antibacterial drug discovery and development [mdash] SRI’s 11th annual summit. IDrugs 9:390–393

    PubMed  Google Scholar 

  • Hirata T, Saito A, Nishino K, Tamura N, Yamaguchi A (2004) Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). Antimicrob Agents Chemother 48:2179–2184

    CAS  PubMed  Google Scholar 

  • Hollenstein U, Brunner M, Mayer BX, Delacher S, Erovic B, Eichler HG, Muller M (2000) Target site concentrations after continuous infusion and bolus injection of cefpirome to healthy volunteers. Clin Pharmacol Ther 67(3):229–236

    CAS  PubMed  Google Scholar 

  • Hooper DC (2000) Mechanisms of action and resistance of older and newer fluoroquinolones. Clin Infect Dis 31(Suppl 2):S24–S28

    CAS  PubMed  Google Scholar 

  • Hopwood DA (1985) Production of “hybrid” antibiotics by genetic engineering. Nature 314:642–644

    CAS  PubMed  Google Scholar 

  • Hyatt JM, McKinnon PS, Zimmer GS, Schentag JJ (1995) The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome. Focus on antibacterial agents. Clin Pharmacokinet 28(2):143–160

    CAS  PubMed  Google Scholar 

  • Jacobs MR (2003) How can we predict bacterial eradication? Int J Infect Dis 7(Suppl 1):S13–S20

    PubMed  Google Scholar 

  • Jacobs MR (2004) Building in efficacy: developing solutions to combat drug-resistant S. pneumoniae. Clin Microbiol Infect 10(Suppl 2):18–27

    CAS  PubMed  Google Scholar 

  • Jumbe N, Louie A, Leary R, Liu W, Deziel MR, Tam VH, Bachhawat R, Freeman C, Kahn JB, Bush K, Dudley MN, Miller MH, Drusano GL (2003) Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy. J Clin Invest 112(2):275–285

    CAS  PubMed  Google Scholar 

  • Jumbe NL, Louie A, Miller MH, Liu W, Deziel MR, Tam VH, Bachhawat R, Drusano GL (2006) Quinolone efflux pumps play a central role in emergence of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 50(1):310–317

    CAS  PubMed  Google Scholar 

  • Keil S, Wiedemann B (1995) Mathematical corrections for bacterial loss in pharmacodynamic in vitro dilution models. Antimicrob Agents Chemother 39(5):1054–1058

    CAS  PubMed  Google Scholar 

  • Khangarot BS, Rathore RS, Tripathi DM (1999) Effects of chromium on humoral and cell-mediated immune responses and host resistance to disease in a freshwater catfish, Saccobranchus fossilis (Bloch). Ecotoxicol Environ Saf 43(1):11–20

    CAS  PubMed  Google Scholar 

  • King TC, Schlessinger D, Krogstad DJ (1981) The assessment of antimicrobial combinations. Rev Infect Dis 3(3):627–633

    CAS  PubMed  Google Scholar 

  • Krylov VN (2003) Role of horizontal gene transfer by bacteriophages in the origin of pathogenic bacteria. Genetika 39(5):595–620

    CAS  PubMed  Google Scholar 

  • Kucers A, Bennett NM (1987) Vancomycin. In: Kucers A, Bennett NM, eds. The Use of Antibiotics: A Comprehensive Review with Clinical Emphasis. 4th ed. Philadelphia, JB Lippinott Co, pp 1045–1068

    Google Scholar 

  • LeClerc JE, Li B, Payne WL, Cebula TA (1996) High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274(5290):1208–1211

    CAS  PubMed  Google Scholar 

  • Lee JJ, Kong M (2009) Confidence intervals of interaction index for assessing multiple drug interaction. Stat Biopharm Res 1(1):4–17

    PubMed  Google Scholar 

  • Lee JJ, Kong M, Ayers GD, Lotan R (2007) Interaction index and different methods for determining drug interaction in combination therapy. J Biopharm Stat 17(3):461–480

    CAS  PubMed  Google Scholar 

  • Liehl B, Hlavaty J, Moldzio R, Tonar Z, Unger H, Salmons B, Gunzburg WH, Renner M (2007) Simian immunodeficiency virus vector pseudotypes differ in transduction efficiency and target cell specificity in brain. Gene Ther 14(18):1330–1343

    CAS  PubMed  Google Scholar 

  • Lipsitch M, Samore MH (2002) Antimicrobial use and antimicrobial resistance: a population perspective. Emerg Infect Dis 8(4):347–354

    PubMed  Google Scholar 

  • Lister PD, Pong A, Chartrand SA, Sanders CC (1997) Rationale behind high-dose amoxicillin therapy for acute otitis media due to penicillin-nonsusceptible pneumococci: support from in vitro pharmacodynamic studies. Antimicrob Agents Chemother 41(9):1926–1932

    CAS  PubMed  Google Scholar 

  • Livermore DM (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis 34(5):634–640

    CAS  PubMed  Google Scholar 

  • Louie A, Kaw P, Liu W, Jumbe N, Miller MH, Drusano GL (2001) Pharmacodynamics of daptomycin in a murine thigh model of Staphylococcus aureus infection. Antimicrob Agents Chemother 45(3):845–851

    CAS  PubMed  Google Scholar 

  • MacGowan AP, Wootton M, Hedges AJ, Bowker KE, Holt HA, Reeves DS (1996) A new time-kill method of assessing the relative efficacy of antimicrobial agents alone and in combination developed using a representative beta-lactam, aminoglycoside and fluoroquinolone. J Antimicrob Chemother 38(2):193–203

    CAS  PubMed  Google Scholar 

  • Madaras-Kelly KJ, Ostergaard BE, Hovde LB, Rotschafer JC (1996) Twenty-four-hour area under the concentration-time curve/MIC ratio as a generic predictor of fluoroquinolone antimicrobial effect by using three strains of Pseudomonas aeruginosa and an in vitro pharmacodynamic model. Antimicrob Agents Chemother 40(3):627–632

    CAS  PubMed  Google Scholar 

  • Mager DE, Wyska E, Jusko WJ (2003) Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 31(5):510–518

    CAS  PubMed  Google Scholar 

  • McKenzie GJ, Harris RS, Lee PL, Rosenberg SM (2000) The SOS response regulates adaptive mutation. Proc Natl Acad Sci U S A 97(12):6646–6651

    CAS  PubMed  Google Scholar 

  • Meagher AK, Passarell JA, Cirincione BB, Van Wart SA, Liolios K, Babinchak T, Ellis-Grosse EJ, Ambrose PG (2007) Exposure-response analyses of tigecycline efficacy in patients with complicated skin and skin-structure infections. Antimicrob Agents Chemother 51(6):1939–1945

    CAS  PubMed  Google Scholar 

  • Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, Cohen SN (2004) SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 305(5690):1629–1631

    CAS  PubMed  Google Scholar 

  • Montgomery MJ, Beringer PM, Aminimanizani A, Louie SG, Shapiro BJ, Jelliffe R, Gill MA (2001) Population pharmacokinetics and use of Monte Carlo simulation to evaluate currently recommended dosing regimens of ciprofloxacin in adult patients with cystic fibrosis. Antimicrob Agents Chemother 45(12):3468–3473

    CAS  PubMed  Google Scholar 

  • Mwangi MM, Wu SW, Zhou Y, Sieradzki K, de Lencastre H, Richardson P, Bruce D, Rubin E, Myers E, Siggia ED, Tomasz A (2007) Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci USA 104(22):9451–9456

    CAS  PubMed  Google Scholar 

  • Neu HC (1992) The crisis in antibiotic resistance. Science 257(5073):1064–1073

    CAS  PubMed  Google Scholar 

  • Palmer SM, Kang SL, Cappelletty DM, Rybak MJ (1995) Bactericidal killing activities of cefepime, ceftazidime, cefotaxime, and ceftriaxone against Staphylococcus aureus and beta-lactamase-producing strains of Enterobacter aerogenes and Klebsiella pneumoniae in an in vitro infection model. Antimicrob Agents Chemother 39(8):1764–1771

    CAS  PubMed  Google Scholar 

  • Paterson DL, Bonomo RA (2005) Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18(4):657–686

    CAS  PubMed  Google Scholar 

  • Peck CC, Cross JT (2007) Getting the dose right: facts, a blueprint, and encouragements. Clin Pharmacol Ther 82(1):12–14

    CAS  PubMed  Google Scholar 

  • Peterson LR, Moody JA, Fasching CE, Gerding DN (1989) Influence of protein binding on therapeutic efficacy of cefoperazone. Antimicrob Agents Chemother 33(4):566–568

    CAS  PubMed  Google Scholar 

  • Preston SL, Drusano GL, Berman AL, Fowler CL, Chow AT, Dornseif B, Reichl V, Natarajan J, Corrado M (1998) Pharmacodynamics of levofloxacin: a new paradigm for early clinical trials. JAMA 279(2):125–129

    CAS  PubMed  Google Scholar 

  • Prichard MN, Prichard LE, Shipman C Jr (1993) Strategic design and three-dimensional analysis of antiviral drug combinations. Antimicrob Agents Chemother 37(3):540–545

    CAS  PubMed  Google Scholar 

  • Rodvold KA, Nicolau DP, Lodise TP, Khashab M, Noel GJ, Kahn JB, Gotfried M, Murray SA, Nicholson S, Laohavaleeson S, Tessier PR, Drusano GL (2009) Identifying exposure targets for treatment of staphylococcal pneumonia with ceftobiprole. Antimicrob Agents Chemother 53(8):3294–3301

    CAS  PubMed  Google Scholar 

  • Srivastava S, Musuka S, Sherman C, Meek C, Leff R, Gumbo T (2010) Efflux-pump-derived multiple drug resistance to ethambutol monotherapy in Mycobacterium tuberculosis and the pharmacokinetics and pharmacodynamics of ethambutol. J Infect Dis 201(8):1225–1231

    CAS  PubMed  Google Scholar 

  • Tam VH, Schilling AN, Nikolaou M (2005) Modelling time-kill studies to discern the pharmacodynamics of meropenem. J Antimicrob Chemother 55(5):699–706

    CAS  PubMed  Google Scholar 

  • Van Der Graaf PH, Danhof M (1997) On the reliability of affinity and efficacy estimates obtained by direct operational model fitting of agonist concentration-effect curves following irreversible receptor inactivation. J Pharmacol Toxicol Methods 38(2):81–85

    PubMed  Google Scholar 

  • Van der Graaf PH, Schoemaker RC (1999) Analysis of asymmetry of agonist concentration-effect curves. J Pharmacol Toxicol Methods 41(2–3):107–115

    PubMed  Google Scholar 

  • Wainberg MA, Friedland G (1998) Public health implications of antiretroviral therapy and HIV drug resistance. JAMA 279(24):1977–1983

    CAS  PubMed  Google Scholar 

  • Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE, Kolonay JF, Shetty J, Killgore GE, Tenover FC (2003) Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302(5650):1569–1571

    CAS  PubMed  Google Scholar 

  • Whitehead A, Whitehead J, Todd S, Zhou Y, Smith MK (2008) Fitting models for the joint action of two drugs using SAS. Pharm Stat 7(4):272–284

    PubMed  Google Scholar 

  • Williams JB (1996) Drug efflux as a mechanism of resistance. Br J Biomed Sci 53:290–293

    CAS  PubMed  Google Scholar 

  • Zelenitsky S, Ariano R, Harding G, Forrest A (2005) Evaluating ciprofloxacin dosing for Pseudomonas aeruginosa infection by using clinical outcome-based Monte Carlo simulations. Antimicrob Agents Chemother 49(10):4009–4014

    CAS  PubMed  Google Scholar 

  • Zhang Y, Young D (1994) Molecular genetics of drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 34(3):313–319

    CAS  PubMed  Google Scholar 

  • Zhi J, Nightingale CH, Quintiliani R (1986) A pharmacodynamic model for the activity of antibiotics against microorganisms under nonsaturable conditions. J Pharm Sci 75(11):1063–1067

    CAS  PubMed  Google Scholar 

  • Zinner SH, Blaser J (1986) In vitro models in the study of antibiotic therapy of infections in neutropenic patients. Am J Med 80(5C):40–44

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L’ntshotsholé “Shasha” Jumbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jumbe, N.L.“., Drusano, G.L. (2011). A Model-Based PK/PD Antimicrobial Chemotherapy Drug Development Platform to Simultaneously Combat Infectious Diseases and Drug Resistance. In: Kimko, H., Peck, C. (eds) Clinical Trial Simulations. AAPS Advances in the Pharmaceutical Sciences Series, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7415-0_12

Download citation

Publish with us

Policies and ethics