Introduction

  • B. S. Rinkevichyus
  • O. A. Evtikhieva
  • I. L. Raskovskaya
Chapter

Abstract

The recent active application of laser methods for the diagnostics of acoustic pressure, temperature, density, salinity, and current velocity fields in transparent media [1] is due to their substantial advantages over other methods. First, optical measurements do not disturb the fields under study, for the energy absorbed by the medium being probed is in most cases sufficiently low. Moreover, laser methods are practically devoid of inertial errors, which makes it possible to diagnose fast processes. Their additional merit is the possibility they provide of taking remote measurements. Laser methods allow one to investigate a refractory index field that can then be converted into the desired field of another physical quantity.

Keywords

Filtration Convection Argon Coherence Refraction 

References

  1. 1.
    B. S. Rinkevichius, Laser Diagnostics in Fluid Mechanics (Begell House Inc. Publishers, New York, 1998).Google Scholar
  2. 2.
    V. A. Soifer, Ed., Computer Optics Methods (Fizmatlit, Moscow, 2003) [in Russian].Google Scholar
  3. 3.
    O. A. Evtikhieva, A. I. Imshenetsky, B. S. Rinkevichyus, and A. V. Tolkachev, “Computer-Laser Refraction Methods for Studying Optically Inhomogeneous Flows,” Izmeritelnaya Tekhnika, 6, 15–18 (2004).Google Scholar
  4. 4.
    N. M. Skornyakova, E. M. Popova, B. S. Rinkevichyus, and A. V. Tolkachev, “The Investigation of Heat Transfer by Background Oriented Schlieren Method,” in CD-ROM Proceedings of the 12th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, 2004. Google Scholar
  5. 5.
    E. V. Gumennik, B. S. Rinkevichyus, O. A. Evtikhieva, and Y. D. Chashechkin, “Concurrent Use of Qualitative and Quantitative Refractometric Methods,” Inzhenerno-Fizichesky Zhurnal, 50(4), 597–604 (1986).Google Scholar
  6. 6.
    A. F. Belozerov, Optical Methods of Visualization of Gas Flows (Kazan State Tech University Press, Kazan, 2007) [in Russian].Google Scholar
  7. 7.
    G. S. Settles, Schlieren and Shadograph Techniques: Visualizing Phenomena in Transparent Media (Springer, Berlin, 2001).CrossRefGoogle Scholar
  8. 8.
    N. N. Evtikhiev, O. A. Evtikhieva, I. N. Kompanets et al., Information Optics, Ed. by N. N. Evtikhiev (Moscow Power Engineering Institute Press, Moscow, 2000) [in Russian].Google Scholar
  9. 9.
    J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968; Mir, Moscow, 1970).Google Scholar
  10. 10.
    L. M. Soroko, Hilbert Optics (Nauka, Moscow, 1981) [in Russian].Google Scholar
  11. 11.
    V. A. Arbuzov and Y. N. Dubnishchev, Hilbert Optics Techniques in Measurement Technologies (Novosibirsk State Tech University Press, Novosibirsk, 2007) [in Russian].Google Scholar
  12. 12.
    M. V. Doroscko, P. P. Kharatsov, O. G. Penyazkov, and I. A. Shikh, “Measurement of Admixture Concentration Fluctuation in a Turbulent Shear Flow Using an Averaged Talbot-Image,” in CD-ROM Proceedings of the 12th International Symposium on Flow Visualization, Goettingen, Sept. 10–14 2006. Google Scholar
  13. 13.
    G. E. A. Meier, “Computerized Background-Oriented Schlieren,” Experiments in Fluids, 33, 181–187 (2002).ADSGoogle Scholar
  14. 14.
    N. M. Skornyakova, E. M. Popova, B. S. Rinkevichyus, and A. V. Tolkachev, “Correlation Processing of BOS Pictures,” in CD-ROM Proceedings of the 5th International Symposium on Particle Image Velocimetry, Pusan, Korea, 2003. Paper 3209, p. 11.Google Scholar
  15. 15.
    E. M. Popova, A. V. Tolkachev, and N. M. Skornyakova, “Use of the Background-Oriented Schlieren Method For Natural Convection Studies,” in Optical Methods for Studying Flows: Proceedings of 7th International Conference. Ed. by Y. N. Dubnishchev and B. S. Rinkevichyus (Moscow Power Engineering Institute Press, Moscow, 2003), pp. 126–129 [in Russian].Google Scholar
  16. 16.
    V. A. Soifer, Ed., Computer Image Processing Techniques (Fizmatlit, Moscow, 2001) [in Russian].Google Scholar
  17. 17.
    F. Klinge and J. Kompenhans, “Recent Development and Application of Background Oriented Schlieren Method,” in Optical Methods for Studying Flows: Proceedings of 9th International Conference. Ed. by Y. N. Dubnishchev and B. S. Rinkevichyus (Moscow Power Engineering Institute Press, Moscow, 2007), pp. 22–25 [in Russian].Google Scholar
  18. 18.
    E. V. Gumennik, Candidate’s Dissertation (All-Union Scientific Research Institute of Optical-Physics Measurements, Moscow, 1982).Google Scholar
  19. 19.
    E. V. Gumennik and B. S. Rinkevichyus, “The Use of the Refraction of a Scanning Laser Beam for Investigations into the Structure of Transparent Inhomogeneities,” Teplofizika Vysokikh Temperatur, 25(6), 1191–1200 (1987).Google Scholar
  20. 20.
    E. V. Gumennik and B. S. Rinkevichyus, “Scanning Laser Refractometer,” Pribory i Tekhnika Eksperimenta, No. 1, 244 (1990).Google Scholar
  21. 21.
    O. A. Evtikhieva and B. S. Rinkevichyus, RF Patent No. 704339 (4 June 1978).Google Scholar
  22. 22.
    O. A. Evtikhieva, Candidate’s Dissertation (Moscow Institute of Engineers of Geodezy, Air Surveying and Cartography, Moscow, 1980).Google Scholar
  23. 23.
    N. V. Karlov, Lectures on Quantum Electronics (Nauka, Moscow, 1987) [in Russian].Google Scholar
  24. 24.
    M. Francon, Laser Speckle and Applications in Optics (Academic Press, New York, 1979; Nauka, Moscow, 1980).Google Scholar
  25. 25.
    N. A. Shatokhina, B. S. Rinkevichyus, and V. A. Zubov, “Using Speckle Interferometry for the Analysis of the Refractive Index Gradient Distribution in Fluid and Gas Flows,” in Laser Anemometry. Advances and Applications, Ed. by B. Ruck, A. Leder, and D. Dopheide (Karlsruhe, 1997), pp. 399–406.Google Scholar
  26. 26.
    B. S. Rinkevichyus, “Present-Day Laser-Computer Techniques for Gas Flow Diagnostics,” in Fundamental Problems of High-Velocity Flows (Central Aerohydrodynamics Institute Press, Moscow, 2004), pp. 412–414 [in Russian].Google Scholar
  27. 27.
    M. V. Yesin, O. A. Evtikhieva, S. V. Orlov, B. S. Rinkevichyus, and A. V. Tolkachev, “Laser Refractometral Method for Visualization of Liquid Mixing in Twisted Flows,” in CD-ROM Proceedings of the 10th International Symposium on Flow Visualization, Kyoto, Japan, Aug. 26–29, 2002. Paper No. F037, pp. 1–8.Google Scholar
  28. 28.
    O. A. Evtikhieva, M. V. Yesin. S. V. Orlov, B. S. Rinkevichyus, and A. V. Tolkachev, “Laser Refraction Method for Studying Liquids in Twisted Flows,” in Proceedings of the 3rd National Conference on Heat Exchange (Moscow Power Engineering Institute Press, Moscow, 2002), Vol. 1, pp. 197–200 [in Russian].Google Scholar
  29. 29.
    B. S. Rinkevichyus, I. L. Raskovskaya, and A. V. Tolkachev, “Laser Refractography—the New Technology of the Transparent Heterogeneities Quantitative Visualization,” in CD-ROM Proceedings of ISFV1313th International Symposium on Flow Visualization, FLUVISU1212th French Congress on Visualization in Fluid Mechanics, Nice, France, July 1–4, 2008. Paper No. 085.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • B. S. Rinkevichyus
    • 1
  • O. A. Evtikhieva
    • 1
  • I. L. Raskovskaya
    • 1
  1. 1.Dept. PhysicsMoscow Power Engineering InstituteMoscowRussia

Personalised recommendations