Skip to main content

Focused Assessment of Scale-Dependent Vegetation Pattern

  • Chapter
  • First Online:
Predictive Species and Habitat Modeling in Landscape Ecology

Abstract

Ecological processes frequently occur at multiple spatial scales simultaneously. For example, fires imprint the landscape at a variety of spatial scales, from small areas of high burn intensity due to patchy surface fuels, to large stands within fires that escape conflagration entirely (Fig. 7.1). These types of complex disturbances can increase environmental heterogeneity and thus species diversity by creating a variety­ of microhabitats and by increasing patch diversity (Romme and Knight 1982; Christensen 1985; Denslow 1985; Pickett and White 1985; Turner et al. 1998). The flow of organisms, genes, and populations provides another excellent example of scale-dependent ecological processes (see Chap. 8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acker SA, Harmon ME, Spies TA, McKee WA (1996) Spatial patterns of tree mortality in an old-growth Abies pseudotsuga stand. Northwest Sci 70:132–138.

    Google Scholar 

  • Allen CD, Savage M, Falk DA, Suckling KF, Swetnam TW, Schulke T, Stacey PB, Morgan P, Hoffman M, Klingel JT (2002) Ecological restoration of Southwestern ponderosa pine ecosystems: a broad perspective. Ecol Appl 12:1418–1433.

    Article  Google Scholar 

  • Allen TFH, Starr TB (1982) Hierarchy: perspectives for ecological complexity. The University of Chicago Press, Chicago.

    Google Scholar 

  • Anderson HW (1963) Managing California’s snow zone lands for water. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Sacramento CA.

    Google Scholar 

  • Agee JK (1998) The landscape ecology of western forest fire regimes. Northwest Sci 72:24–33.

    Google Scholar 

  • Austin MP (1987) Models for the analysis of species’ response to environmental gradients. Vegetatio 69:35–45.

    Article  Google Scholar 

  • Austin MP, Smith TM (1989) A new model for the continuum concept. Vegetatio 83:35–47.

    Article  Google Scholar 

  • Bachelet D, Neilson RP, Lenihan JM, Drapek RJ (2001) Climate change effects on vegetation distribution and carbon budget in the United States. Ecosystems 4:164–185.

    Article  CAS  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Modelling directional spatial processes in ecological data. Ecol Modell 215:325–336.

    Article  Google Scholar 

  • Bonnicksen TM, Stone EC (1982) Managing vegetation within U.S. national parks: a policy analysis. Environ Manage 5:101–102 and 109–122.

    Article  Google Scholar 

  • Bradshaw GA, Spies TA (1992) Characterizing canopy gap structure in forests using wavelet analysis. J Ecol 80:205–215.

    Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349.

    Article  Google Scholar 

  • Brooks ML (2002) Peak fire temperatures and effects on annual plants in the Mojave Desert. Ecol Appl 12:1088–1102.

    Article  Google Scholar 

  • Bunn AG, Graumlich LJ, Urban DL (2005) Trends in twentieth-century tree growth at high elevations in the Sierra Nevada and White Mountains, USA. Holocene 15:481–488.

    Article  Google Scholar 

  • Camarero JJ, Gutierrez E, Fortin M-J (2000) Spatial pattern of subalpine forest-alpine grassland ecotone in the Spanish Central Pyrenees. For Ecol Manage 134:1–6.

    Article  Google Scholar 

  • Camill P, Clark JS (2000) Long-term perspectives on lagged ecosystem responses to climate change: permafrost in boreal peatlands and the grassland/woodland boundary. Ecosystems 3:534–544.

    Article  Google Scholar 

  • Carl G, Kuhn I (2008) Analyzing spatial ecological data using linear regression and wavelet analysis. Stoch Environ Res Risk Assess 22:315–324.

    Article  Google Scholar 

  • Cazelles B, Chavez M, Berteaux D, Menard F, Vik JO, Jenouvrier S, Stenseth NC (2008) Wavelet analysis of ecological time series. Oecologia 156:287–304.

    Article  PubMed  Google Scholar 

  • Chong GW, Reich RM, Kalkhan MA, Stohlgren TJ (2001) New approaches for sampling and modeling native and exotic plant species richness. West N Am Nat 61:328–335.

    Google Scholar 

  • Christensen NL (1985) Shrubland fire regimes and their evolutionary consequences. In: Pickett STA, White P (eds) The ecology of natural disturbance and patch dynamics. Academic Press, Orlando, pp. 85–100.

    Google Scholar 

  • Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14.

    Article  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley, New York.

    Google Scholar 

  • Dale MRT (1999) Spatial pattern analysis in plant ecology. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Dale MRT, Mah M (1998) The use of wavelets for spatial pattern analysis in ecology. J Veg Sci 9:805–814.

    Article  Google Scholar 

  • Davis FW, Borchert MI, Odion DC (1989) Establishment of microscale vegetation pattern in maritime chaparral after fire. Vegetatio 84:53–67.

    Article  Google Scholar 

  • Denny MW, Helmuth B, Leonard GH, Harley CDG, Hunt LJH, Nelson EK (2004) Quantifying scale in ecology: lessons from a wave-swept shore. Ecol Monogr 74:513–532.

    Article  Google Scholar 

  • Denslow JS (1985) Disturbance-mediated coexistence of species. In: Pickett STA, White P (eds) The ecology of natural disturbance and patch dynamics. Academic Press, Orlando, pp. 307–323.

    Google Scholar 

  • Dong XJ, Nyren P, Patton B, Nyren A, Richardson J, Maresca T (2008) Wavelets for agriculture and biology: a tutorial with applications and outlook. Bioscience 58:445–453.

    Article  Google Scholar 

  • Dormann CF (2007) Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Glob Ecol Biogeogr 16:129–138.

    Article  Google Scholar 

  • Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kuhn I, Ohlemuller R, Peres-Neto PR, Reineking B, Schroder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628.

    Article  Google Scholar 

  • Fonda RW, Bliss LC (1969) Forest vegetation of the montane and subalpine zones, Olympic Mountains, Washington. Ecol Monogr 39:271–301.

    Article  CAS  Google Scholar 

  • Fortin M-J, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Fortin M-J, Olson RJ, Ferson S, Iverson L, Hunsaker C, Edwards G, Levine D, Butera K, Klemas V (2000) Issues related to the detection of boundaries. Landsc Ecol 15:453–466.

    Article  Google Scholar 

  • Franklin JF, Dyrness CT (1988) Natural vegetation of Oregon and Washington. Oregon State University Press, Corvallis.

    Google Scholar 

  • Fraterrigo JM, Rusak JA (2008) Disturbance-driven changes in the variability of ecological patterns and processes. Ecol Lett 11:756–770.

    Article  PubMed  Google Scholar 

  • Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, New York.

    Google Scholar 

  • Gill AM, Bradstock RA, Williams JE (2002) Fire regimes and biodiversity: legacy and vision. In: Bradstock RA, Williams JE, Gill AM (eds) Flammable Australia: the fire regimes and biodiversity of a continent. Cambridge University Press, Cambridge, pp. 429–446.

    Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19.

    Google Scholar 

  • Gosz JR (1993) Ecotone hierarchies. Ecol Appl 3:369–376.

    Article  Google Scholar 

  • Greig-Smith P (1961) Data on pattern within plant communities: I. The analysis of pattern. J Ecol 49:695–702.

    Article  Google Scholar 

  • Gumpertz ML, Wu C, Pye JM (2000) Logistic regression for southern pine beetle outbreaks with spatial and temporal autocorrelation. For Sci 46:95–107.

    Google Scholar 

  • Haase P (1995) Spatial pattern analysis in ecology based on Ripley’s K-function: introduction and methods of edge correction. J Veg Sci 6:575–582.

    Article  Google Scholar 

  • Haase P, Pugnaire FI, Clark SC, Incoll LD (1996) Spatial patterns in a two-tiered semi-arid shrubland in southeastern Spain. J Veg Sci 7:527–534.

    Article  Google Scholar 

  • Halpin P (1997) Global climate change and natural-area protection: management responses and research directions. Ecol Appl 7:828–843.

    Article  Google Scholar 

  • Hansen AJ, di Castri F (eds) (1992) Landscape boundaries: consequences for biotic diversity and ecological flows. Springer-Verlag, New York.

    Google Scholar 

  • Hastie T, Tibshirani R (1990) Exploring the nature of covariate effects in the proportional hazards model. Biometrics 46:1005–1016.

    Article  CAS  PubMed  Google Scholar 

  • He YH, Guo XL, Si BC (2007) Detecting grassland spatial variation by a wavelet approach. Int J Remote Sens 28:1527–1545.

    Article  Google Scholar 

  • Hoeting JA, Leecaster M, Bowden D (2000) An improved model for spatially correlated binary responses. J Agric Biol Environ Stat 5:102–114.

    Article  Google Scholar 

  • Iverson LR, Schwartz MW, Prasad AM (2004) Potential colonization of newly available tree-species habitat under climate change: an analysis for five eastern US species. Landsc Ecol 19:787–799.

    Article  Google Scholar 

  • Keitt TH, Fischer J (2006) Detection of scale-specific community dynamics using wavelets. Ecology 87:2895–2904.

    Article  PubMed  Google Scholar 

  • Keitt TH, Urban DL (2005) Scale-specific inference using wavelets. Ecology 86:2497–2504.

    Article  Google Scholar 

  • Keitt TH, Bjornstad ON, Dixon PM, Citron-Pousty S (2002) Accounting for spatial pattern when modeling organism-environment interactions. Ecography 25:616–625.

    Article  Google Scholar 

  • Knapp EE, Keeley JE (2006) Heterogeneity in fire severity within early season and late season prescribed burns in a mixed-conifer forest. Int J Wildland Fire 15:37–45.

    Article  Google Scholar 

  • Krajina VJ (1969) Ecology of forest trees in British Columbia. Ecol West N Am 2:1–146.

    Google Scholar 

  • Legendre P (1993) Spatial autocorrelation – trouble or new paradigm. Ecology 74:1659–1673.

    Article  Google Scholar 

  • Legendre P, Fortin M (1989) Spatial pattern and ecological analysis. Vegetatio 80:107–138.

    Article  Google Scholar 

  • Legendre P, Borcard D, Peres-Neto PR (2008) Analyzing or explaining beta diversity? Comment. Ecology 89:3238–3244.

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967.

    Article  Google Scholar 

  • Littell JS, Peterson DL, Tjoelker M (2008) Douglas-fir growth in mountain ecosystems: water limits tree growth from stand to region. Ecol Monogr 78:349–368.

    Article  Google Scholar 

  • Lookingbill TR, Urban DL (2003) Spatial estimation of air temperature differences for landscape-scale studies in montane environments. Agric For Meteorol 114:141–151.

    Article  Google Scholar 

  • Lookingbill TR, Urban DL (2004) An empirical approach towards improved spatial estimates of soil moisture for vegetation analysis. Landsc Ecol 19:417–433.

    Article  Google Scholar 

  • Lookingbill TR, Urban DL (2005) Gradient analysis, the next generation: towards more plant-relevant explanatory variables. Can J For Res 35:1744–1753.

    Article  Google Scholar 

  • Lookingbill TR, Zavala MA (2000) Spatial pattern of Quercus ilex and Quercus pubescens recruitment in Pinus halepensis dominated woodlands. J Veg Sci 11:607–612.

    Article  Google Scholar 

  • Lookingbill TR, Goldenberg NE, Williams BH (2004) Understory species as soil moisture indicators in Oregon’s Western Cascades old-growth forests. Northwest Sci 78:214–224.

    Google Scholar 

  • Lynch HJ, Renkin RA, Crabtree RL, Moorcroft PR (2006) The influence of previous mountain pine beetle (Dendroctonus ponderosae) activity on the 1988 Yellowstone fires. Ecosystems 9:1318–1327.

    Article  Google Scholar 

  • Manly BFJ (1991) Randomization and Monte Carlo methods in biology. Chapman and Hall, London.

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220.

    CAS  PubMed  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, OR.

    Google Scholar 

  • McKee A (1998) Focus on field stations: H.J. Andrews Experimental Forest. Bull Ecol Soc Am 79:241–246.

    Google Scholar 

  • McIntire EJB, Fajardo A (2009) Beyond description: the active and effective way to infer processes from spatial patterns. Ecology 90:46–56.

    Article  PubMed  Google Scholar 

  • Mi XC, Ren HB, Ouyang ZS, Wei W, Ma KP (2005) The use of the Mexican Hat and the Morlet wavelets for detection of ecological patterns. Plant Ecol 179:1–19.

    Article  Google Scholar 

  • Miller C, Urban DL (1999) A model of surface fire, climate and forest pattern in Sierra Nevada, California. Ecol Modell 114:113–135.

    Article  CAS  Google Scholar 

  • Miller J (2005) Incorporating spatial dependence in predictive vegetation models: residual interpolation methods. Prof Geogr 57:169–184.

    Article  Google Scholar 

  • Miller J, Franklin J, Aspinall R (2007) Incorporating spatial dependence in predictive vegetation models. Ecol Model 202:225–242.

    Article  Google Scholar 

  • Mitchell AK, Koppenaal R, Goodmanson G, Benton R, Bown T (2007) Regenerating montane conifers with variable retention systems in a coastal British Columbia forest: 10-year results. For Ecol Manage 246:240–250.

    Article  Google Scholar 

  • Moeur M (1997) Spatial models of competition and gap dynamics in old-growth Tsuga heterophylla and Thuja plicata forests. For Ecol Manage 94: 175–186.

    Article  Google Scholar 

  • Moreno JM, Oechel WC (1992) Factors controlling postfire seedling establishment in southern California chaparral. Oecologia 90:50–60.

    Article  Google Scholar 

  • Morin X, Augspurger C, Chuine I (2007) Process-based modeling of tree species’ distributions: what limits temperate tree species’ range boundaries? Ecology 88:2280–2291.

    Article  PubMed  Google Scholar 

  • Morin X, Viner D, Chuine I (2008) Tree species range shifts at a continental scale: new predictive insights from a process-based model. J Ecol 96:784–794.

    Article  Google Scholar 

  • Neilson RP (1991) Climatic constraints and issues of scale controlling regional biomes. In: Holland MM, Risser PG, Naiman RJ (eds) Ecotones: the role of landscape boundaries in the management and restoration of changing environments. Chapman and Hall, New York, pp. 31–51.

    Google Scholar 

  • Neilson RP (1995) A model for predicting continental-scale vegetation distribution and water balance. Ecol Appl 5:362–385.

    Article  Google Scholar 

  • Neilson RP, Drapek RJ (1998) Potentially complex biosphere response to transient global warming. Glob Change Biol 4:505–521.

    Article  Google Scholar 

  • Noss RF (2001) Beyond Kyoto: forest management in a time of rapid climate change. Conserv Biol 15:578–590.

    Article  Google Scholar 

  • Nusser SM, Breidt EJ, Fuller WA (1998) Design and estimation for investigating the dynamics of natural resources. Ecol Appl 8:234–245.

    Article  Google Scholar 

  • Odion DC, Davis FW (2000) Fire, soil heating, and the formation of vegetation patterns in chaparral. Ecol Monogr 70:149–169.

    Article  Google Scholar 

  • Ogden RT (1997) Essential wavelets for statistical applications and data analysis. Birkhauser, Boston.

    Google Scholar 

  • Ohmann JL, Spies TA (1998) Regional gradient analysis and spatial pattern of woody plant communities of Oregon forests. Ecol Monogr 68:151–182.

    Article  Google Scholar 

  • Peet RK (1981) Forest vegetation of the Colorado Front Range – composition and dynamics. Vegetatio 45:3–75.

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625.

    Article  PubMed  Google Scholar 

  • Peters DP, Herrick JE, Urban DL, Gardner RH, Breshears DD (2004) Strategies for ecological extrapolation. Oikos 106:627–636.

    Article  Google Scholar 

  • Peters RL, Darling JD (1985) The greenhouse effect and nature reserve design. Bioscience 35:707–717.

    Article  Google Scholar 

  • Philippi T (2005) Adaptive cluster sampling for estimation of abundances within local populations of low-abundance plants. Ecology 86:1091–1100.

    Article  Google Scholar 

  • Pickett STA,White PS (1985) The ecology of natural disturbance and patch dynamics. Academic press, Orlando.

    Google Scholar 

  • Pickett STA, Kolasa J, Armesto JJ, Collins SL (1989) The ecological concept of disturbance and its expression at various hierarchical levels. Oikos 54:129–136.

    Article  Google Scholar 

  • Risser PG (1995) The status of the science examining ecotones. Bioscience 45:318–325.

    Article  Google Scholar 

  • Rocca ME (2009) Fine-scale patchiness in fuel load can influence initial post-fire understory composition in a mixed conifer forest, Sequoia National Park, California. Nat Areas J 29:126–132.

    Article  Google Scholar 

  • Romme WH, Knight DH (1982) Landscape diversity – the concept applied to Yellowstone Park. Bioscience 32:664–670.

    Article  Google Scholar 

  • Rossi RE, Mulla DJ, Journel AG, Fran EH. (1992) Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol Monogr 62:277–314.

    Article  Google Scholar 

  • Schoennagel T, Veblen TT, Romme WH (2004) The interaction of fire, fuels, and climate across rocky mountain forests. Bioscience 54:661–676.

    Article  Google Scholar 

  • Schoennagel T, Smithwick AHE, Turner MG (2008) Landscape heterogeneity following large fires: insights from Yellowstone National Park, USA. Int J Wildland Fire 17:742–753.

    Article  Google Scholar 

  • Shreve F (1922) Conditions indirectly affecting vertical distribution on desert mountains. Ecology 3:269–274.

    Article  Google Scholar 

  • Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627–632.

    Article  Google Scholar 

  • Stephenson NL (1990) Climatic control of vegetation distribution: the role of the water balance. Am Nat 135:649–670.

    Article  Google Scholar 

  • Stephenson NL (1998) Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. J Biogeogr 25:855–870.

    Article  Google Scholar 

  • Stephenson NL (1999) Reference conditions for giant sequoia forest restoration: structure, process, and precision. Ecol Appl 9:1253–1265.

    Article  Google Scholar 

  • Stevens Jr DL, Olsen AN (2004) Spatially balanced sampling of natural resources. J Am Stat Assoc 99:262–278.

    Article  Google Scholar 

  • Stohlgren TJ, Falkner MB, Schell LD (1995) A modified-Whittaker nested vegetation sampling method. Vegetatio 117:113–121.

    Article  Google Scholar 

  • Stohlgren TJ,Chong GW, Kalkhan MA, Schell LD (1997) Multiscale sampling of plant diversity: effects of minimum mapping unit size. Ecol Appl 7:1064–1074.

    Article  Google Scholar 

  • Theobald DM, Stevens DL, White D, Urquhart NS, Olsen AR, Norman JB (2007) Using GIS to generate spatially balanced random survey designs for natural resource applications. Environ Manage 40:134–146.

    Article  PubMed  Google Scholar 

  • Thornburgh DA (1969) Dynamics of the true fir-hemlock forests of the west slope of the Washington Cascade Range. University of Washington, Seattle.

    Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78.

    Article  Google Scholar 

  • Turner MG, Romme WH, Gardner RH, Hargrove WW (1997) Effects of fire size and pattern on early succession in Yellowstone National Park. Ecol Monogr 67:411–433.

    Article  Google Scholar 

  • Turner MG, Baker WL, Peterson CJ, Peet RK (1998) Factors influencing succession: lessons from large, infrequent natural disturbances. Ecosystems 1:511–523.

    Article  Google Scholar 

  • Turner MG, Romme WH, Gardner RH (1999) Prefire heterogeneity, fire severity, and early postfire plant reestablishment in subalpine forests of Yellowstone National Park, Wyoming. Int J Wildland Fire 9:21–36.

    Article  Google Scholar 

  • Underwood EC, Ustin SL, Ramirez CM (2007) A comparison of spatial and spectral image resolution for mapping invasive plants in coastal California. Environ Manage 39:63–83.

    Article  PubMed  Google Scholar 

  • Urban DL (2000) Using model analysis to design monitoring programs for landscape management and impact assessment. Ecol Appl 10:1820–1832.

    Article  Google Scholar 

  • Urban DL, Harmon ME, Halpern CB (1993) Potential response in Pacific Northwestern forests to climate changes: effects of stand age and initial composition. Clim Change 23:247–266.

    Article  Google Scholar 

  • Urban DL, Miller C, Halpin PN, Stephenson NL (2000) Forest gradient response in Sierran landscapes: the physical template. Landsc Ecol 15:603–620.

    Article  Google Scholar 

  • Urban D, Goslee S, Pierce K, Lookingbill T (2002) Extending community ecology to landscapes. Ecoscience 9:200–212.

    Google Scholar 

  • Wagner HH (2001) Spatial covariance in plant communities: integrating ordination, geostatistics, and variance testing. Ecology 84:1045–1057.

    Article  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397.

    Article  Google Scholar 

  • Whittaker RH (1956) Vegetation of the Great Smoky Mountains. Ecol Monogr 26:1–80.

    Article  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338.

    Article  Google Scholar 

  • Whittaker RH (1967) Gradient analysis of vegetation. Biol Rev Camb Philos Soc 42:207–264.

    Article  CAS  PubMed  Google Scholar 

  • Winkler JB, Schultz F (2000) Seasonal variation of snowcover: inexpensive method for automatically measuring snow depth. In: Schroeter B, Schlensog M, Green TGA (eds) New aspects in cryptogamic research: contributions in honour of Ludger Kappen. Biblitheca Lichenologica 75. Cramer, Berlin, pp. 381–338.

    Google Scholar 

  • Wu J, Hobbs RJ (eds) (2007) Key topics in landscape ecology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Wu J, Loucks OL (1995) From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q Rev Biol 70:439–466.

    Article  Google Scholar 

  • Zeger SL, Liang KY (1986) Longitudinal data-analysis for discrete and continuous outcomes. Biometrics 42:121–130.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Y. Wiersma and three anonymous reviewers for valuable comments on earlier drafts of this manuscript. Field data were collected in the HJA as part of NSF awards IBN-9652656 and DEB-0108191. We thank the small army of field assistants that helped gather data for both of the case studies. The prescribed fire research would not have been possible without colleagues at USGS and NPS: N. Stephenson, J. Keeley, E. Knapp, E. Ballenger, T. Caprio, M. Keifer, and B. Jacobs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd R. Lookingbill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+BUsiness Media, LLC

About this chapter

Cite this chapter

Lookingbill, T.R., Rocca, M.E., Urban, D.L. (2011). Focused Assessment of Scale-Dependent Vegetation Pattern. In: Drew, C., Wiersma, Y., Huettmann, F. (eds) Predictive Species and Habitat Modeling in Landscape Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7390-0_7

Download citation

Publish with us

Policies and ethics