Skip to main content

Insights from Ecological Theory on Temporal Dynamics and Species Distribution Modeling

  • Chapter
  • First Online:
Predictive Species and Habitat Modeling in Landscape Ecology

Abstract

Understanding species distributions in space and time is essential to ecology, ­evolution, and conservation biology. There is a growing need for robust habitat models that can adequately predict species distributions across broad spatial scales (Guisan and Thuiller 2005). An invaluable tool for conservation biologists (Norris 2004), species distribution models can be used to evaluate potential management actions, interpret the potential effects of climate change, and maximize biodiversity with reserve selection algorithms (Guisan and Thuiller 2005, see also Chap. 14). Yet the usefulness of such models is limited by a number of factors (Guisan and Thuiller 2005; Araújo and Guisan 2006), including poor incorporation of ecological theory in modeling approaches (Austin 2002; Huston 2002; Guisan et al. 2006). This is unfortunate because many theories in ecology can help guide the model building process, which may not only improve model predictions but may also provide greater inference regarding habitat quality in heterogeneous landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison PD (1999) Logistic regression using the SAS system. SAS Institute, Inc., Cary, NC.

    Google Scholar 

  • Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688.

    Article  Google Scholar 

  • Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118.

    Article  Google Scholar 

  • Austin M (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Model 200:1–19.

    Article  Google Scholar 

  • Bissonette JA, Storch I (eds) (2007) Temporal dimensions of landscape ecology: wildlife responses to variable resources. Springer, New York.

    Google Scholar 

  • Bonte D, Lens L, Maelfait JP, Hoffmann M, Kuijken E (2003) Patch quality and connectivity influence spatial dynamics in a dune wolfspider. Oecologia 135:227–233.

    PubMed  Google Scholar 

  • Box GEP, Draper NR (1987) Empirical model-building and response surfaces. Wiley, New York.

    Google Scholar 

  • Brewer CK, Berglund D, Barber JA, Bush R (2004) Northern region vegetation mapping project summary report and spatial datasets, version 42. Northern Region USFS.

    Google Scholar 

  • Brown JL (1969) The buffer effect and productivity in tit populations. Am Nat 103:347–354.

    Article  Google Scholar 

  • Brudvig LA, Damschen EI, Tewksbury JJ, Haddad NM, Levey DJ (2009) Landscape connectivity promotes plant biodiversity spillover into non-target habitats. Proc Natl Acad Sci 106:9328–9332.

    Article  CAS  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and inference: a practical information-theoretic approach. Springer-Verlag, New York.

    Google Scholar 

  • Castellón TD, Sieving KE (2006) Landscape history, fragmentation, and patch occupancy: models for a forest bird with limited dispersal. Ecol Appl 16:2223–2234.

    Article  PubMed  Google Scholar 

  • Chamberlain DE, Fuller RJ (1999) Density-dependent habitat distribution in birds: issues of scale, habitat definition and habitat availability. J Avian Biol 30:427–436.

    Article  Google Scholar 

  • Colwell RK, Futuyma DJ (1971) On the measurement of niche breadth and overlap. Ecology 52:567–576.

    Article  Google Scholar 

  • Dunford W, Burke DM, Nol E (2002) Assessing edge avoidance and area sensitivity of Red-eyed Vireos in southcentral Ontario. Wilson Bull 114:79–86.

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151.

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49.

    Article  Google Scholar 

  • Fleishman E, Ray C, Sjögren-Gulve P, Boggs CL, Murphy DD (2002) Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conserv Biol 16:706–716.

    Article  Google Scholar 

  • Fletcher RJ, Jr. (2006) Emergent properties of conspecific attraction in fragmented landscapes. Am Nat 168:207–219.

    Article  PubMed  Google Scholar 

  • Fletcher RJ, Jr., Hutto RL (2008) Partitioning the multi-scale effects of human activity on the occurrence of riparian forest birds. Landsc Ecol 23:727–739.

    Article  Google Scholar 

  • Fraser DF, Sise TE (1980) Observations on stream minnows in a patchy environment: a test of a theory of habitat distribution. Ecology 61:790–797.

    Article  Google Scholar 

  • Fretwell SD, Lucas HL, Jr (1970) On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development. Acta Biotheo 19:16–36.

    Article  Google Scholar 

  • Gesch D, Oimoen M, Greenlee S, Nelson C, Steuck M, Tyler D (2002) The National Elevation Dataset. Photogram Eng Remote Sensing, 68(1):5–11.

    Article  Google Scholar 

  • Gill JA, Norris K, Potts PM, Gunnarsson TG, Atkinson PW, Sutherland WJ (2001) The buffer effect and large-scale population regulation in migratory birds. Nature 412:436–438.

    Article  CAS  PubMed  Google Scholar 

  • Guisan A, Harrell FE (2000) Ordinal response regression models in ecology. J Veg Sci 11:617–626.

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009.

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186.

    Article  Google Scholar 

  • Guisan A, Lehmann A, Ferrier S, Austin M, Overton JMC, Aspinal R, Hatie T (2006) Making better biogeographical predictions of species’ distributions. J Appl Ecol 43:386–392.

    Article  Google Scholar 

  • Hames RS, Rosenberg KV, Lowe JD, Dhondt AA (2001) Site reoccupation in fragmented landscapes: testing predictions of metapopulation theory. J Anim Ecol 70:182–190.

    Article  Google Scholar 

  • Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758.

    Article  CAS  PubMed  Google Scholar 

  • Huston MA (2002) Introductory essay: critical issues for improving predictions. In: Scott JM, Heglund PJ, Morrison ML (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington DC.

    Google Scholar 

  • Hutto RL, Young JS (1999) Habitat relationships of landbirds in the Northern Region, USDA Forest Service. General Technical Report RMRS-GTR-32. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, UT.

    Google Scholar 

  • Hutto RL, Young JS (2002) Regional landbird monitoring: perspectives from the Northern Rocky Mountains. Wildl Soc Bull 30:738–750.

    Google Scholar 

  • Hutto RL, Pletschet SM, Hendricks P (1986) A fixed-radius point count method for nonbreeding and breeding-season use. Auk 103:593–602.

    Google Scholar 

  • Johnson DH, Igl LD (2001) Area requirements of grassland birds: a regional perspective. Auk 118:24–34.

    Article  Google Scholar 

  • Karanth KU, Nichols JD, Kumar NS, Link WA, Hines JE (2004) Tigers and their prey: predicting carnivore densities from prey abundance. Proc Natl Acad Sci 101:4854–4858.

    Article  CAS  PubMed  Google Scholar 

  • Lischke H, Bolliger J, Seppelt R (2007) Dynamic spatio-temporal landscape models. In: Kienast F, Wildi O, Ghosh S (eds) A changing world: challenges for landscape research. Springer, Dordrecht, Netherlands.

    Google Scholar 

  • Liu CR, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393.

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255.

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84:2200–2207.

    Article  Google Scholar 

  • Moilanen A (2000) The equilibrium assumption in estimating the parameters of metapopulation models. J Anim Ecol 69:143–153.

    Article  Google Scholar 

  • Moilanen A, Hanski I (1998) Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79:2503–2515.

    Article  Google Scholar 

  • Newton I (1998) Population limitation in birds. Academic Press, Inc., San Diego, CA.

    Google Scholar 

  • Norris K (2004) Managing threatened species: the ecological toolbox, evolutionary theory and declining-population paradigm. J Appl Ecol 41:413–426.

    Article  Google Scholar 

  • O’Connor RJ (1981) Habitat correlates of bird distribution in British census plots. Stud Avian Biol 6:533–537.

    Google Scholar 

  • Pan W (2001) Model selection in estimating equations. Biometrics 57:529–534.

    Article  CAS  PubMed  Google Scholar 

  • Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661.

    Article  Google Scholar 

  • Pulliam HR, Danielson BJ (1991) Sources, sinks, and habitat selection: a landscape perspective on population dynamics. Am Nat 137:S50–S66.

    Article  Google Scholar 

  • Ralph CJ, Sauer JR, Droege S (1995) Monitoring bird populations by point counts. USDA Forest Service General Technical Report PSW-GTR 149.

    Google Scholar 

  • Rodenhouse NL, Sherry TW, Holmes RT (1997) Site-dependent regulation of population size: a new synthesis. Ecology 78:2025–2042.

    Google Scholar 

  • Sergio F, Newton I (2003) Occupancy as a measure of territory quality. J Anim Ecol 72:857–865.

    Article  Google Scholar 

  • Shochat E, Patten MA, Morris DW, Reinking DL, Wolfe DH, Sherrod SK (2005) Ecological traps in isodars: effects of tallgrass prairie management on bird nest success. Oikos 111:159–169.

    Article  Google Scholar 

  • Tewksbury JJ, Garner L, Garner S, Lloyd JD, Saab V, Martin TE (2006) Tests of landscape influence: nest predation and brood parasitism in fragmented ecosystems. Ecology 87:759–768.

    Article  PubMed  Google Scholar 

  • Thogmartin WE, Sauer JR, Knutson MG (2004) A hierarchical spatial model of avian abundance with application to Cerulean Warblers. Ecol Appl 14:1766–1779.

    Article  Google Scholar 

  • Thomas JA, Bourn NAD, Clarke RT, Steward KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc Lond Ser B 268:1791–1796.

    Article  CAS  Google Scholar 

  • Tyler JA, Hargrove WW (1997) Predicting spatial distribution of foragers over large resource landscapes: a modeling analysis of the ideal free distribution. Oikos 79:376–386.

    Article  Google Scholar 

  • Van Horne B (1983) Density as a misleading indicator of habitat quality. J Wildl Manag 47:893–901.

    Article  Google Scholar 

  • Verheyen K, Vellend M, Van Calster H, Peterken G, Hermy M (2004) Metapopulation dynamics in changing landscapes: a new spatially realistic model for forest plants. Ecology 85:3302–3312.

    Article  Google Scholar 

  • Wiens JA (1989) The ecology of bird communities: Volume 1, Foundations and Patterns. Cambridge University Press.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant #2006-55101-17158. The landbird database was created through support from USFS Northern Region (03-CR-11015600-019). We thank two anonymous reviewers who provided valuable comments on a previous version of this manuscript, which improved the ideas presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Fletcher Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+BUsiness Media, LLC

About this chapter

Cite this chapter

Fletcher, R.J., Young, J.S., Hutto, R.L., Noson, A., Rota, C.T. (2011). Insights from Ecological Theory on Temporal Dynamics and Species Distribution Modeling. In: Drew, C., Wiersma, Y., Huettmann, F. (eds) Predictive Species and Habitat Modeling in Landscape Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7390-0_6

Download citation

Publish with us

Policies and ethics