Skip to main content

Biological Applications of Stimulated Parametric Emission Microscopy and Stimulated Raman Scattering Microscopy

  • Chapter
  • First Online:
Information Optics and Photonics

Abstract

Two types of newly developed nonlinear-optical microscopy are presented, namely, stimulated parametric emission (SPE) microscopy and stimulated Raman scattering (SRS) microscopy, together with their biological applications. These techniques allow high-resolution 3D visualization of unstained living cells. SPE microscopy is also applied to time-lapse observation of dividing cells as well as simultaneous observation of fluorescence emitted from labeled organelles and SPE signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science, vol. 263, no. 5148, pp. 802–805 (1994).

    Google Scholar 

  2. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science, vol. 248, no. 4951, pp. 73–76 (1991).

    Google Scholar 

  3. S. W. Hell, “Far-field optical nanoscopy,” Science, vol. 316, no. 5828, pp. 1153–1158 (2007).

    Google Scholar 

  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181 (1991).

    Google Scholar 

  5. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett., vol. 22, no. 24, pp. 1905–1907 (1997).

    Google Scholar 

  6. P. J. Campagnola, M.-D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J., vol. 77, no. 6, pp. 3341–3349 (1999).

    Google Scholar 

  7. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett., vol. 70, no. 8, pp. 922–924 (1997).

    Google Scholar 

  8. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett., vol. 82, no. 20, pp. 4142–4145 (1999).

    Google Scholar 

  9. M. Hashimoto, T. Araki, and S. Kawata, “Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration,” Opt. Lett., vol. 25, no. 24, pp. 1768–1770 (2000).

    Google Scholar 

  10. K. Isobe, S. Kataoka, R. Murase, W. Watanabe, T. Higashi, S. Kawakami, S. Matsunaga, K. Fukui, and K. Itoh, “Stimulated parametric emission microscopy,” Opt. Express, vol. 14, no. 2, pp. 786–793 (2006).

    Google Scholar 

  11. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature, vol. 418, no. 6897, pp. 512–514 (2002).

    Google Scholar 

  12. H. M. Dang, T. Kawasumi, G. Omura, T. Umano, S. Kajiyama, Y. Ozeki, K. Itoh, and K. Fukui, “Three-dimensional unstained live-cell imaging using stimulated parametric emission microscopy,” Jpn. J. Appl. Phys., vol. 48, p. 097003 (2009).

    Article  ADS  Google Scholar 

  13. H. M. Dang, G. Omura, T. Umano, M. Yamagiwa, S. Kajiyama, Y. Ozeki, K. Itoh, and K. Fukui, “Label-free imaging by stimulated parametric emission microscopy reveals a difference in hemoglobin distribution between live and fixed erythrocytes,” J. Biomed. Opt., vol. 14, p. 040506 (2009).

    Article  ADS  Google Scholar 

  14. M. Yamagiwa, Y. Ozeki, G. Omura, T. Suzuki, S. Kajiyama, K. Fukui, and K. Itoh, “Nonlinear phase imaging using two-beam interferometry in stimulated parametric emission microscopy,” Jpn. J. Appl. Phys., vol. 48, p. 062501 (2009).

    Article  ADS  Google Scholar 

  15. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côte’, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A., vol. 102, no. 46, pp. 16807–16812 (2005).

    Google Scholar 

  16. A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett., vol. 87, no. 2, pp. 23901–23904 (2001).

    Google Scholar 

  17. J. -X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. vol. 26, no. 17, pp. 1341–1343 (2001).

    Google Scholar 

  18. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett., vol. 31, no. 2, pp. 241–243 (2006).

    Google Scholar 

  19. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett., vol. 31, no. 12, pp. 1872–1874 (2006).

    Google Scholar 

  20. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science, vol. 322, no. 5909, pp. 1857–1861 (2008).

    Google Scholar 

  21. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express, vol. 17, no. 5, pp. 3651–3658 (2009).

    Google Scholar 

  22. P. Nandakumar, A. Kovalev, and A Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys., vol. 11, p. 033026 (2009).

    Article  ADS  Google Scholar 

  23. B. F. Levine, C. V. Shank, and J. P. Heritage, “Surface vibrational spectroscopy using stimulated Raman scattering,” IEEE J. Quantum Electron, vol. QE-15, no. 12, pp. 1418–1432 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Itoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kajiyama, S., Ozeki, Y., Fukui, K., Itoh, K. (2010). Biological Applications of Stimulated Parametric Emission Microscopy and Stimulated Raman Scattering Microscopy. In: Javidi, B., Fournel, T. (eds) Information Optics and Photonics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7380-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7380-1_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7379-5

  • Online ISBN: 978-1-4419-7380-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics