Skip to main content

The Neuronal Actin Cytoskeleton and the Protrusion of Lamellipodia and Filopodia

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 5))

Abstract

The protrusion of filopodia and lamellipodia from the surface of neurons is fundamental to axon extension, guidance, the formation of axon branches, and synaptic structures. Protrusion is driven by the polymerization and controlled organization of actin filament arrays. This chapter provides an overview of the basic mechanisms operative during protrusion. Mechanisms underlying the suppression of protrusive activity are also discussed in relation to the regulation of axonal morphology. The purpose of this chapter is to provide the reader with an understanding of the major concepts underlying the regulation of actin filaments in protrusion without delving deeply into the molecular mechanisms, which are discussed in other chapters of this volume. Focus is placed on the organization of actin filaments in protrusive structures and how the organization relates to the process of protrusion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahuja R, Pinyol R, Reichenbach N, Custer L, Klingensmith J, Kessels MM, Qualmann B (2007) Cordon-bleu is an actin nucleation factor and controls neuronal morphology. Cell 131:337–350.

    Article  PubMed  CAS  Google Scholar 

  • Aizawa H, Wakatsuki S, Ishii A, Moriyama K, Sasaki Y, Ohashi K, Sekine-Aizawa Y, Sehara-Fujisawa A, Mizuno K, Goshima Y, Yahara I (2001) Phosphorylation of cofilin by LIM-kinase is necessary for semaphorin 3A-induced growth cone collapse. Nat Neurosci 4:367–373.

    Article  PubMed  CAS  Google Scholar 

  • Andersen R, Yimei LI, Resseguie M, Brenman JE (2005) Calcium/calmodulin-dependent protein kinase II alters structural plasticity and cytoskeletal dynamics in Drosophila. J Neurosci 25:8878–8888.

    Article  PubMed  CAS  Google Scholar 

  • Beli P, Mascheroni D, Xu D, Innocenti M (2008) WAVE and Arp2/3 jointly inhibit filopodium formation by entering into a complex with mDia2. Nat Cell Biol 10:849–857.

    Article  PubMed  CAS  Google Scholar 

  • Bramham CR, Wells DG (2007) Dendritic mRNA: transport, translation and function. Nat Rev Neurosci 8:776–789.

    Article  PubMed  CAS  Google Scholar 

  • Bray D, Chapman K (1985) Analysis of microspike movements on the neuronal growth cone. J Neurosci 5:3204–3213.

    PubMed  CAS  Google Scholar 

  • Brown J, Bridgman PC (2003a) Role of myosin II in axon outgrowth. J Histochem Cytochem 51:421–428.

    PubMed  CAS  Google Scholar 

  • Brown ME, Bridgman PC (2003b) Retrograde flow rate is increased in growth cones from myosin IIB knockout mice. J Cell Sci 116:1087–1094.

    Article  PubMed  CAS  Google Scholar 

  • Brown JC, Bridgman PC (2009) Disruption of the cytoskeleton during semaphorin 3A induced growth cone collapse correlates with differences in actin organization and associated binding proteins. Dev Neurobiol 69:633–646.

    Article  PubMed  CAS  Google Scholar 

  • Burnette DT, Ji L, Schaefer AW, Medeiros NA, Danuser G, Forscher P (2008) Myosin II activity facilitates microtubule bundling in the neuronal growth cone neck. Dev Cell 15:163–169.

    Article  PubMed  CAS  Google Scholar 

  • Condeelis J, Singer RH (2005) How and why does beta-actin mRNA target? Biol Cell 97:97–110.

    Article  PubMed  CAS  Google Scholar 

  • Cooper JA, Wear MA, Weaver AM (2001) Arp2/3 complex: advances on the inner workings of a molecular machine. Cell 107:703–705.

    Article  PubMed  CAS  Google Scholar 

  • Dent EW, Gertler FB (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40:209–227.

    Article  PubMed  CAS  Google Scholar 

  • Dent EW, Kalil K (2001) Axon branching requires interactions between dynamic microtubules and actin filaments. J Neurosci 21:9757–9769.

    PubMed  CAS  Google Scholar 

  • Dent EW, Tang F, Kalil K (2003b) Axon guidance by growth cones and branches: common cytoskeletal and signaling mechanisms. Neuroscientist 9:343–353.

    Article  PubMed  CAS  Google Scholar 

  • Diefenbach TK, Latham VM, Yimlamai D, Liu CA, Herman IM, Jay DG (2002) Myosin 1c and myosin IIB serve opposing roles in lamellipodial dynamics of the neuronal growth cone. J Cell Biol 158:1207–1217.

    Article  PubMed  CAS  Google Scholar 

  • Dwivedy A, Gertler FB, Miller J, Holt CE, Lebrand C (2007) Ena/VASP function in retinal axons is required for terminal arborization but not pathway navigation. Development 134:2137–2146.

    Article  PubMed  CAS  Google Scholar 

  • Eom T, Antar LN, Singer RH, Bassell GJ (2003) Localization of a beta-actin messenger ribonucleoprotein complex with zipcode-binding protein modulates the density of dendritic filopodia and filopodial synapses. J Neurosci 23:10433–10444.

    PubMed  CAS  Google Scholar 

  • Fan J, Mansfield SG, Redmond T, Gordon-Weeks PR, Raper JA (1993) The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor. J Cell Biol 121:867–878.

    Article  PubMed  CAS  Google Scholar 

  • Gallo G (2006) RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction. J Cell Sci 119:3413–3423.

    Article  PubMed  CAS  Google Scholar 

  • Gehler S, Shaw AE, Sarmiere PD, Bamburg JR, Letourneau PC (2004) Brain-derived neurotrophic factor regulation of retinal growth cone filopodial dynamics is mediated through actin depolymerizing factor/cofilin. J Neurosci 24:10741–10749.

    Article  PubMed  CAS  Google Scholar 

  • Gomez TM, Robles E, Poo M, Spitzer NC (2001) Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291:1983–1987.

    Article  PubMed  CAS  Google Scholar 

  • Goode BL, Eck MJ (2007) Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem 76:593–627.

    Article  PubMed  CAS  Google Scholar 

  • Grzywa EL, Lee AC, Lee GU, Suter DM (2006) High-resolution analysis of neuronal growth cone morphology by comparative atomic force and optical microscopy. J Neurobiol 66:1529–1543.

    Article  PubMed  CAS  Google Scholar 

  • Hu K, Ji L, Applegate KT, Danuser G, Waterman-Storer CM (2007) Differential transmission of actin motion within focal adhesions. Science 315:111–115.

    Article  PubMed  CAS  Google Scholar 

  • Jay DG (2000) The clutch hypothesis revisited: ascribing the roles of actin-associated proteins in filopodial protrusion in the nerve growth cone. J Neurobiol 44:114–125.

    Article  PubMed  CAS  Google Scholar 

  • Jurney WM, Gallo G, Letourneau PC, McLoon SC (2002) Rac1-mediated endocytosis during ephrin-A2- and semaphorin 3A-induced growth cone collapse. J Neurosci 22:6019–6028.

    PubMed  CAS  Google Scholar 

  • Kater SB, Rehder V (1995) The sensory-motor role of growth cone filopodia. Curr Opin Neurobiol 5:68–74.

    Article  PubMed  CAS  Google Scholar 

  • Korobova F, Svitkina T (2008) Arp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells. Mol Biol Cell 19:1561–1574.

    Article  PubMed  CAS  Google Scholar 

  • Korobova F, Svitkina T (2010) Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol Biol Cell 21:165–176.

    Article  PubMed  CAS  Google Scholar 

  • Lebrand C, Dent EW, Strasser GA, Lanier LM, Krause M, Svitkina TM, Borisy GG, Gertler FB (2004) Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron 42:37–49.

    Article  PubMed  CAS  Google Scholar 

  • Leung KM, van Horck FP, Lin AC, Allison R, Standart N, Holt CE (2006) Asymmetrical beta-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nat Neurosci 9:1247–1256.

    Article  PubMed  CAS  Google Scholar 

  • Lewis AK, Bridgman PC (1992) Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity. J Cell Biol 119:1219–1243.

    Article  PubMed  CAS  Google Scholar 

  • Lin CH, Espreafico EM, Mooseker MS, Forscher P (1996) Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron 16:769–782.

    Article  PubMed  CAS  Google Scholar 

  • Lin AC, Holt CE (2007) Local translation and directional steering in axons. EMBO J 26:3729–3736.

    Article  PubMed  CAS  Google Scholar 

  • Loudon RP, Silver LD, Yee HF Jr, Gallo G (2006) RhoA-kinase and myosin II are required for the maintenance of growth cone polarity and guidance by nerve growth factor. J Neurobiol 66:847–867.

    Article  PubMed  CAS  Google Scholar 

  • Mallavarapu A, Mitchison T (1999) Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J Cell Biol 146:1097–1106.

    Article  PubMed  CAS  Google Scholar 

  • Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454.

    Article  PubMed  CAS  Google Scholar 

  • Meberg PJ, Bamburg JR (2000) Increase in neurite outgrowth mediated by overexpression of actin depolymerizing factor. J Neurosci 20:2459–2469.

    PubMed  CAS  Google Scholar 

  • Medeiros NA, Burnette DT, Forscher P (2006) Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol 8:215–226.

    Article  PubMed  CAS  Google Scholar 

  • Mingorance-Le Meur A, O’Connor TP (2009) Neurite consolidation is an active process requiring constant repression of protrusive activity. EMBO J 28:248–260.

    Article  PubMed  CAS  Google Scholar 

  • Mongiu AK, Weitzke EL, Chaga OY, Borisy GG (2007) Kinetic–structural analysis of neuronal growth cone veil motility. J Cell Sci 120:1113–1125.

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465.

    Article  PubMed  CAS  Google Scholar 

  • Roche FK, Marsick BM, Letourneau PC (2009) Protein synthesis in distal axons is not required for growth cone responses to guidance cues. J Neurosci 29:638–652.

    Article  PubMed  CAS  Google Scholar 

  • Sabo SL, McAllister AK (2003) Mobility and cycling of synaptic protein-containing vesicles in axonal growth cone filopodia. Nat Neurosci 6:1264–1269.

    Article  PubMed  CAS  Google Scholar 

  • Sarmiere PD, Bamburg JR (2004) Regulation of the neuronal actin cytoskeleton by ADF/cofilin. J Neurobiol 58:103–117.

    Article  PubMed  CAS  Google Scholar 

  • Sekino Y, Kojima N, Shirao T (2007) Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem Int 51:92–104.

    Article  PubMed  CAS  Google Scholar 

  • Steketee M, Balazovich K, Tosney KW (2001) Filopodial initiation and a novel filament-organizing center, the focal ring. Mol Biol Cell 12:2378–2395.

    PubMed  CAS  Google Scholar 

  • Steketee MB, Tosney KW (2002) Three functionally distinct adhesions in filopodia: shaft adhesions control lamellar extension. J Neurosci 22:8071–8083.

    PubMed  CAS  Google Scholar 

  • Strasser GA, Rahim NA, VanderWaal KE, Gertler FB, Lanier LM (2004) Arp2/3 is a negative regulator of growth cone translocation. Neuron 43:81–94.

    Article  PubMed  CAS  Google Scholar 

  • Suter DM, Forscher P (2000) Substrate–cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J Neurobiol 44:97–113.

    Article  PubMed  CAS  Google Scholar 

  • Suter DM, Forscher P (2001) Transmission of growth cone traction force through apCAM-cytoskeletal linkages is regulated by Src family tyrosine kinase activity. J Cell Biol 155:427–438.

    Article  PubMed  CAS  Google Scholar 

  • Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima S, Vasiliev JM, Borisy GG (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160:409–421.

    Article  PubMed  CAS  Google Scholar 

  • Sydor AM, Su AL, Wang FS, Xu A, Jay DG (1996) Talin and vinculin play distinct roles in filopodial motility in the neuronal growth cone. J Cell Biol 134:1197–1207.

    Article  PubMed  CAS  Google Scholar 

  • Verkhovsky AB, Svitkina TM, Borisy GG (1999) Network contraction model for cell translocation and retrograde flow. Biochem Soc Symp 65:207–222.

    PubMed  CAS  Google Scholar 

  • Yao J, Sasaki Y, Wen Z, Bassell GJ, Zheng JQ (2006) An essential role for beta-actin mRNA localization and translation in Ca2+-dependent growth cone guidance. Nat Neurosci 9:1265–1273.

    Article  PubMed  CAS  Google Scholar 

  • Zhang HL, Eom T, Oleynikov Y, Shenoy SM, Liebelt DA, Dictenberg JB, Singer RH, Bassell GJ (2001) Neurotrophin-induced transport of a beta-actin mRNP complex increases beta-actin levels and stimulates growth cone motility. Neuron 31:261–275.

    Article  PubMed  CAS  Google Scholar 

  • Zhang HL, Singer RH, Bassell GJ (1999) Neurotrophin regulation of beta-actin mRNA and protein localization within growth cones. J Cell Biol 147:59–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant to GG (NIH NS048090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Gallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gallo, G. (2011). The Neuronal Actin Cytoskeleton and the Protrusion of Lamellipodia and Filopodia. In: Gallo, G., Lanier, L. (eds) Neurobiology of Actin. Advances in Neurobiology, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7368-9_2

Download citation

Publish with us

Policies and ethics