Skip to main content

Actin and Diseases of the Nervous System

  • Chapter
  • First Online:
Neurobiology of Actin

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 5))

Abstract

Abnormal regulation of the actin cytoskeleton results in several pathological conditions affecting primarily the nervous system. Those of genetic origin arise during development, but others manifest later in life. Actin regulation is also affected profoundly by environmental factors that can have sustained consequences for the nervous system. Those consequences follow from the fact that the actin cytoskeleton is essential for a multitude of cell biological functions ranging from neuronal migration in cortical development and dendritic spine formation to NMDA receptor activity in learning and alcoholism. Improper regulation of actin, causing aggregation, can contribute to the neurodegeneration of amyloidopathies, such as Down’s syndrome and Alzheimer’s disease. Much progress has been made in understanding the molecular basis of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258:1812–1815.

    Article  PubMed  CAS  Google Scholar 

  • Andrianantoandro E, Pollard TD (2006) Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell 24:13–23.

    Article  PubMed  CAS  Google Scholar 

  • Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973.

    Article  PubMed  CAS  Google Scholar 

  • Antonova I, Arancio O, Trillat AC, Wang HG, Zablow L, Udo H, Kandel ER, Hawkins RD (2001) Rapid increase in clusters of presynaptic proteins at onset of long-lasting potentiation. Science 294:1547–1550.

    Article  PubMed  CAS  Google Scholar 

  • Ashworth SL, Southgate EL, Sandoval RM, Meberg PJ, Bamburg JR, Molitoris BA (2003) ADF/cofilin mediates actin cytoskeletal alterations in LLC-PK cells during ATP depletion. Am J Physiol Renal Physiol 284:F852–F862.

    PubMed  CAS  Google Scholar 

  • Ashworth SL, Wean SE, Campos SB, Temm-Grove CJ, Southgate EL, Vrhovski B, Gunning P, Weinberger RP, Molitoris BA (2004) Renal ischemia induces tropomyosin dissociation-destabilizing microvilli microfilaments. Am J Physiol Renal Physiol 286:F988–F996.

    Article  PubMed  CAS  Google Scholar 

  • Augsburger A, Schuchardt A, Hoskins S, Dodd J, Butler S (1999) BMPs as mediators of roof plate repulsion of commissural neurons. Neuron 24:127–141.

    Article  PubMed  CAS  Google Scholar 

  • Axelrod D, Ravdin P, Koppe DE, Schlessinger J, Webb WW, Elson EL, Podleski TR (1976) Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. Proc Natl Acad Sci USA 73:4594–4598.

    Article  PubMed  CAS  Google Scholar 

  • Bassell GJ, Kelic S (2004) Binding proteins for mRNA localization and local translation, and their dysfunction in genetic neurological disease. Curr Opin Neurobiol 14:574–581.

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner S, Martin D, Chiquet-Ehrismann R, Sutton J, Desai A, Huang I, Kato K, Hromas R (1995) The HEM proteins: a novel family of tissue-specific transmembrane proteins expressed from invertebrates through mammals with an essential function in oogenesis. J Mol Biol 251:41–49.

    Article  PubMed  CAS  Google Scholar 

  • Bellenchi GC, Gurniak CB, Perlas E, Middei S, Ammassari-Teule M, Witke W (2007) N-Cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes Dev 21:2347–2357.

    Article  PubMed  CAS  Google Scholar 

  • Bellugi U, Lichtenberger L, Mills D, Galaburda A, Korenberg JR (1999) Bridging cognition, the brain and molecular genetics: evidence from Williams syndrome. Trends Neurosci 22:197–207.

    Article  PubMed  CAS  Google Scholar 

  • Benavides-Piccione R, Ballesteros-Yanez I, de Lagran MM, Elston G, Estivill X, Fillat C, Defelipe J, Dierssen M (2004) On dendrites in down syndrome and DS murine models: a spiny way to learn. Prog Neurobiol 74:111–126.

    Article  PubMed  CAS  Google Scholar 

  • Berardelli A, Rothwell JC, Hallett M, Thompson PD, Manfredi M, Marsden CD (1998) The pathophysiology of primary dystonia. Brain 121:1195–1212.

    Article  PubMed  Google Scholar 

  • Bernstein BW, Bamburg JR (2003) Actin–ATP hydrolysis is a major energy drain for neurons. J Neurosci 23:1–6.

    PubMed  CAS  Google Scholar 

  • Bernstein BW, Chen H, Boyle JA, Bamburg JR (2006) Formation of actin–ADF/cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons. Am J Physiol Cell Physiol 291:C828–C839.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein BW, DeWit M, Bamburg JR (1998) Actin disassembles reversibly during electrically induced recycling of synaptic vesicles in cultured neurons. Mol Brain Res 53:236–250.

    Article  PubMed  CAS  Google Scholar 

  • Bershadsky AD, Gelfand VI, Svitkina TM, Tint IS (1980) Destruction of microfilament bundles in mouse embryo fibroblasts treated with inhibitors of energy metabolism. Exp Cell Res 127:421–429.

    Article  PubMed  CAS  Google Scholar 

  • Bhatia KP, Marsden CD (1994) The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 117:859–876.

    Article  PubMed  Google Scholar 

  • Bovolenta P (2005) Morphogen signaling at the vertebrate growth cone: a few cases or a general strategy? J Neurobiol 64:405–416.

    Article  PubMed  Google Scholar 

  • Bullock TH, Bennett MV, Johnsto D, Josephson R, Marder E, Fields RD (2005) Neuroscience. The neuron doctrine, redux. Science 310:791–793.

    Article  PubMed  CAS  Google Scholar 

  • Campbell DS, Holt CE (2001) Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32:1013–1026.

    Article  PubMed  CAS  Google Scholar 

  • Cartier L, Galvez S, Gajdusek DC (1985) Familial clustering of the ataxic form of Creutzfeldt-Jakob disease with Hirano bodies. J Neurol Neurosurg Psychiatry 48:234–238.

    Article  PubMed  CAS  Google Scholar 

  • Castets M, Schaeffer C, Bechara E, Schenck A, Khandjian EW, Luche S, Moine H, Rabilloud T, Mandel L, Bardoni B (2005) FMRP interferes with the Rac1 pathway and controls actin cytoskeleton dynamics in murine fibroblasts. Hum Mol Genet 14:835–844.

    Article  PubMed  CAS  Google Scholar 

  • Chartier-Harlin MC, Crawford F, Hamandi K, Mullan M, Goate A, Hardy J, Backhovens H, Martin JJ, Broeckhoven CV (1991a) Screening for the beta-amyloid precursor protein mutation (APP717: Val–Ile) in extended pedigrees with early onset Alzheimer’s disease. Neurosci Lett 129:134–135.

    Article  PubMed  CAS  Google Scholar 

  • Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Roques P, Hardy J (1991b) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353:844–846.

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Bernstein BW, Bamburg JR (2000) Regulating actin-filament dynamics in vivo. Trends Biochem Sci 25:19–23.

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Ji J, Ru B (2005) Proteomic analysis of corticobasal degeneration: a case study of corticobasal degeneration at the proteome level. J Neuropsychiatry Clin Neurosci 17:364–371.

    PubMed  CAS  Google Scholar 

  • Chernoff N, Rogers JM (2004) Supernumerary ribs in developmental toxicity bioassays and in human populations: incidence and biological significance. J Toxicol Environ Health B Crit Rev 7:437–449.

    PubMed  CAS  Google Scholar 

  • Chua BT, Volbracht C, Tan KO, Li R, Yu VC, Li P (2003) Mitochondrial translocation of cofilin is an early step in apoptosis induction. Nat Cell Biol 5:1083–1089.

    Article  PubMed  CAS  Google Scholar 

  • Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci 8:79–84.

    Article  PubMed  CAS  Google Scholar 

  • Corfas G, Roy K, Buxbaum JD (2004) Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat Neurosci 7:575–580.

    Article  PubMed  CAS  Google Scholar 

  • Culebras A, Feldman RG, Merk FB (1973) Cytoplasmic inclusion bodies within neurons of the thalamus in myotonic dystrophy. A light and electron microscope study. J Neurol Sci 19:319–329.

    Article  PubMed  CAS  Google Scholar 

  • Dahl E, Koseki H, Balling R (1997) Pax genes and organogenesis. Bioessays 19:755–765.

    Article  PubMed  CAS  Google Scholar 

  • Dailey ME, Smith SJ (1996) The dynamics of dendritic structure in developing hippocampal slices. J Neurosci 16:2983–2994.

    PubMed  CAS  Google Scholar 

  • Daniel JL, Molish IR, Robkin L, Holmsen H (1986) Nucleotide exchange between cytosolic ATP and F-actin-bound ADP may be a major energy-utilizing process in unstimulated platelets. Eur J Biochem 156:677–684.

    Article  PubMed  CAS  Google Scholar 

  • Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB (2001) Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107:489–499.

    Article  PubMed  CAS  Google Scholar 

  • Davis RC, Maloney MT, Minamide LS, Flynn KC, Stonebraker MA, Bamburg JR (2009) Mapping cofilin–actin rods in stressed hippocampal slices and the role of cdc42 in amyloid-beta-induced rods. J Alzheimers Dis 18:35–50.

    PubMed  CAS  Google Scholar 

  • Disanza A, Carlier MF, Stradal TE, Didry D, Frittoli E, Confalonieri S, Croce A, Wehland J, Di Fiore PP, Scita G (2004) Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nat Cell Biol 6:1180–1188.

    Article  PubMed  CAS  Google Scholar 

  • Ehehalt R, Keller P, Haass C, Thiele C, Simons K (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160:113–123.

    Article  PubMed  CAS  Google Scholar 

  • Ethell IM, Pasquale EB (2005) Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol 75:161–205.

    Article  PubMed  CAS  Google Scholar 

  • Fahn S, Bressman SB, Marsden CD (1998) Classification of dystonia. Adv Neurol 78:1–10.

    PubMed  CAS  Google Scholar 

  • Fedulov V, Rex CS, Simmons DA, Palmer L, Gallo G, Lynch G (2007) Evidence that long-term potentiation occurs within individual hippocampal synapses during learning. J Neurosci 27:8031–8039.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez R, Fernandez JM, Cervera C, Teijeira S, Teijeiro A, Dominguez C, Navarro C (1999) Adult glycogenosis II with paracrystalline mitochondrial inclusions and Hirano bodies in skeletal muscle. Neuromuscul Disord 9:136–143.

    Article  PubMed  CAS  Google Scholar 

  • Fiala JC, Feinberg M, Popov V, Harris KM (1998) Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J Neurosci 18:8900–8911.

    PubMed  CAS  Google Scholar 

  • Field EJ, Mathews JD, Raine CS (1969) Electron microscopic observations on the cerebellar cortex in kuru. J Neurol Sci 8:209–224.

    Article  PubMed  CAS  Google Scholar 

  • Field EJ, Narang HK (1972) An electron-microscopic study of scrapie in the rat: further observations on “inclusion bodies” and virus-like particles. J Neurol Sci 17:347–364.

    Article  PubMed  CAS  Google Scholar 

  • Frangiskakis JM, Ewart AK, Morris CA, Mervis CB, Bertrand J, Robinson BF, Klein BP, Ensing GJ, Everett LA, Green ED, Proschel C, Gutowski NJ, Noble M, Atkinson DL, Odelberg S, Keating MT (1996) LIM-kinase1 hemizygosity implicated in impaired visuospatial constructive cognition. Cell 86:59–69.

    Article  PubMed  CAS  Google Scholar 

  • Fraser H (1969) Eosinophilic bodies in some neurones in the thalamus of ageing mice. J Pathol 98:201–204.

    Article  PubMed  CAS  Google Scholar 

  • Frears ER, Stephens DJ, Walters CE, Davies H, Austen BM (1999) The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport 10:1699–1705.

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Ward J, Young HF (1975) Unusual, rod-shaped cytoplasmic inclusions (Hirano bodies) in a cerebellar hemangioblastoma. Acta Neuropathol (Berl) 31:129–135.

    Article  CAS  Google Scholar 

  • Fujii R, Takumi T (2005) TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines. J Cell Sci 118:5755–5765.

    Article  PubMed  CAS  Google Scholar 

  • Fukazawa Y, Saitoh Y, Ozawa F, Ohta Y, Mizuno K, Inokuchi K (2003) Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38:447–460.

    Article  PubMed  CAS  Google Scholar 

  • Fukui Y (1978) Intranuclear actin bundles induced by dimethyl sulfoxide in interphase nucleus of Dictyostelium. J Cell Biol 76:146–157.

    Article  PubMed  CAS  Google Scholar 

  • Fukui Y, Katsumaru H (1979) Nuclear actin bundles in amoeba, Dictyostelium and human HeLa cells induced by dimethyl sulfoxide. Exp Cell Res 120:451–455.

    Article  PubMed  CAS  Google Scholar 

  • Galvan V, Chen S, Lu D, Logvinova A, Goldsmith P, Koo EH, Bredesen DE (2002) Caspase cleavage of members of the amyloid precursor family of proteins. J Neurochem 82:283–294.

    Article  PubMed  CAS  Google Scholar 

  • Garvalov BK, Flynn KC, Neukirchen D, Meyn L, Teusch N, Wu X, Brakebusch C, Bamburg JR, Bradke F (2007) Cdc42 regulates cofilin during the establishment of neuronal polarity. J Neurosci 27:13117–13129.

    Article  PubMed  CAS  Google Scholar 

  • Gearing M, Juncos JL, Procaccio V, Gutekunst CA, Marino-Rodriguez EM, Gyure KA, Ono S, Santoianni R, Krawiecki NS, Wallace DC, Wainer BH (2002) Aggregation of actin and cofilin in identical twins with juvenile-onset dystonia. Ann Neurol 52:465–476.

    Article  PubMed  CAS  Google Scholar 

  • Gehler S, Shaw AE, Sarmiere PD, Bamburg JR, Letourneau PC (2004) Brain-derived neurotrophic factor regulation of retinal growth cone filopodial dynamics is mediated through actin depolymerizing factor/cofilin. J Neurosci 24:10741–10749.

    Article  PubMed  CAS  Google Scholar 

  • Gessaga EC, Anzil AP (1975) Rod-shaped filamentous inclusions and other ultrastructural features in a cerebellar astrocytoma. Acta Neuropathol (Berl) 33:119–127.

    Article  CAS  Google Scholar 

  • Gibson PH, Tomlinson BE (1977) Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer’s disease. J Neurol Sci 33:199–206.

    Article  PubMed  CAS  Google Scholar 

  • Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein AM, Brewer KC, Doyle AM, Nagy N, Roberts DJ (2005) BMP signaling is necessary for neural crest cell migration and ganglion formation in the enteric nervous system. Mech Dev 122:821–833.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin R, Jamison K (1990) Manic-Depressive Illness. Oxford University Press, New York, NY.

    Google Scholar 

  • Gorovoy M, Niu J, Bernard O, Profirovic J, Minshall R, Neamu R, Voyno-Yasenetskaya T (2005) LIM kinase 1 coordinates microtubule stability and actin polymerization in human endothelial cells. J Biol Chem 280:26533–26542.

    Article  PubMed  CAS  Google Scholar 

  • Greenough WT, Klintsova AY, Irwin SA, Galvez R, Bates KE, Weiler IJ (2001) Synaptic regulation of protein synthesis and the fragile X protein. Proc Natl Acad Sci USA 98:7101–7106.

    Article  PubMed  CAS  Google Scholar 

  • Gu Z, Jiang Q, Fu AK, Ip NY, Yan Z (2005a) Regulation of NMDA receptors by neuregulin signaling in prefrontal cortex. J Neurosci 25:4974–4984.

    Article  PubMed  CAS  Google Scholar 

  • Gu Z, Jiang Q, Fu AK, Ip NY, Yan Z (2005b) Regulation of NMDA receptors by neuregulin signaling in prefrontal cortex. J Neurosci 25:4974–4984.

    Article  PubMed  CAS  Google Scholar 

  • Gungabissoon RA, Bamburg JR (2003) Regulation of growth cone actin dynamics by ADF/cofilin. J Histochem Cytochem 51:411–420.

    PubMed  CAS  Google Scholar 

  • Hadfield MG, Martinez AJ, Gilmartin RC (1974) Progressive multifocal leukoencephalopathy with paramyxovirus-like structures, Hirano bodies and neurofibrillary tangles. Acta Neuropathol (Berl) 27:277–288.

    Article  CAS  Google Scholar 

  • Han L, Stope MB, de Jesus ML, Oude Weernink PA, Urban M, Wieland T, Rosskopf D, Mizuno K, Jakobs KH, Schmidt M (2007) Direct stimulation of receptor-controlled phospholipase D1 by phospho-cofilin. EMBO J 26:4189–4202.

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356.

    Article  PubMed  CAS  Google Scholar 

  • Harris KM (1999) Calcium from internal stores modifies dendritic spine shape. Proc Natl Acad Sci USA 96:12213–12215.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi ML, Rao BS, Seo JS, Choi HS, Dolan BM, Choi SY, Chattarji S, Tonegawa S (2007) Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice. Proc Natl Acad Sci USA 104:11489–11494.

    Article  PubMed  CAS  Google Scholar 

  • Heredia L, Helguera P, de Olmos S, Kedikian G, Sola VF, LaFerla F, Staufenbiel M, de Olmos J, Busciglio J, Caceres A, Lorenzo A (2006) Phosphorylation of actin-depolymerizing factor/cofilin by LIM-kinase mediates amyloid beta-induced degeneration: a potential mechanism of neuronal dystrophy in Alzheimer’s disease. J Neurosci 26:6533–6542.

    Article  PubMed  CAS  Google Scholar 

  • Hirano A (1994) Hirano bodies and related neuronal inclusions. Neuropathol Appl Neurobiol 20:3–11.

    Article  PubMed  CAS  Google Scholar 

  • Hirano A, Dembitzer HM, Kurland LT, Zimmerman HM (1968) The fine structure of some intraganglionic alterations. Neurofibrillary tangles, granulovacuolar bodies and “rod-like” structures as seen in Guam amyotrophic lateral sclerosis and parkinsonism–dementia complex. J Neuropathol Exp Neurol 27:167–182.

    Article  PubMed  CAS  Google Scholar 

  • Ho KL, Allevato PA (1986) Hirano body in an inflammatory cell of leptomeningeal vessel infected by fungus Paecilomyces. Acta Neuropathol (Berl) 71:159–162.

    Article  CAS  Google Scholar 

  • Holtmaat AJ, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, Knott GW, Svoboda K (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45:279–291.

    Article  PubMed  CAS  Google Scholar 

  • Hoogenraad CC, Akhmanova A, Galjart N, De Zeeuw CI (2004) LIMK1 and CLIP-115: linking cytoskeletal defects to Williams syndrome. Bioessays 26:141–150.

    Article  PubMed  CAS  Google Scholar 

  • Hoogenraad CC, Koekkoek B, Akhmanova A, Krugers H, Dortland B, Miedema M, van Alphen A, Kistler WM, Jaegle M, Koutsourakis M, Van Camp N, Verhoye M, van der LA, Kaverina I, Grosveld F, De Zeeuw CI, Galjart N (2002) Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice. Nat Genet 32:116–127.

    Article  PubMed  CAS  Google Scholar 

  • Houssen WE, Jaspars M, Wease KN, Scott RH (2006) Acute actions of marine toxin latrunculin A on the electrophysiological properties of cultured dorsal root ganglion neurones. Comp Biochem Physiol C Toxicol Pharmacol 142:19–29.

    Article  PubMed  CAS  Google Scholar 

  • Huang TY, DerMardirossian C, Bokoch GM (2006) Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol 18:26–31.

    Article  PubMed  CAS  Google Scholar 

  • Huttelmaier S, Zenklusen D, Lederer M, Dictenberg J, Lorenz M, Meng X, Bassell GJ, Condeelis J, Singer RH (2005) Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438:512–515.

    Article  PubMed  CAS  Google Scholar 

  • Huttenlocher PR (1970) Dendritic development and mental defect. Neurology 20:381.

    PubMed  CAS  Google Scholar 

  • Huttenlocher PR (1975) Synaptic and dendritic development and mental defect. UCLA Forum Med Sci 18:123–140.

    PubMed  Google Scholar 

  • Iida K, Iida H, Yahara I (1986) Heat shock induction of intranuclear actin rods in cultured mammalian cells. Exp Cell Res 165:207–215.

    Article  PubMed  CAS  Google Scholar 

  • Iida K, Matsumoto S, Yahara I (1992) The KKRKK sequence is involved in heat shock-induced nuclear translocation of the 18-kDa actin-binding protein, cofilin. Cell Struct Funct 17:39–46.

    Article  PubMed  CAS  Google Scholar 

  • Innocenti M, Frittoli E, Ponzanelli I, Falck JR, Brachmann SM, Di Fiore PP, Scita G (2003) Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. J Cell Biol 160:17–23.

    Article  PubMed  CAS  Google Scholar 

  • Insel TR (2007) Neuroscience. Shining light on depression. Science 317:757–758.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs T, Causeret F, Nishimura YV, Terao M, Norman A, Hoshino M, Nikolic M (2007) Localized activation of p21-activated kinase controls neuronal polarity and morphology. J Neurosci 27:8604–8615.

    Article  PubMed  CAS  Google Scholar 

  • Jang DH, Han JH, Lee SH, Lee YS, Park H, Lee SH, Kim H, Kaang BK (2005) Cofilin expression induces cofilin–actin rod formation and disrupts synaptic structure and function in Aplysia synapses. Proc Natl Acad Sci USA 102:16072–16077.

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA (1998) The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev 78:763–781.

    PubMed  CAS  Google Scholar 

  • Jontes JD, Smith SJ (2000) Filopodia, spines, and the generation of synaptic diversity. Neuron 27:11–14.

    Article  PubMed  CAS  Google Scholar 

  • Kawano N, Horoupian DS (1981) Intracytoplasmic rod-like inclusions in caudate nucleus. Neuropathol Appl Neurobiol 7:307–314.

    Article  PubMed  CAS  Google Scholar 

  • Keating MT (1997) On the trail of genetic culprits in Williams syndrome. Cardiovasc Res 36:134–137.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MB, Beale HC, Carlisle HJ, Washburn LR (2005) Integration of biochemical signalling in spines. Nat Rev Neurosci 6:423–434.

    Article  PubMed  CAS  Google Scholar 

  • Kim CH, Lisman JE (1999) A role of act in filament in synaptic transmission and long-term potentiation. J Neurosci 19:4314–4324.

    PubMed  CAS  Google Scholar 

  • Kligys K, Claiborne JN, DeBiase PJ, Hopkinson SB, Wu Y, Mizuno K, Jones JC (2007) The slingshot family of phosphatases mediates Rac1 regulation of cofilin phosphorylation, laminin-332 organization, and motility behavior of keratinocytes. J Biol Chem 282:32520–32528.

    Article  PubMed  CAS  Google Scholar 

  • Koch C, Zador A (1993) The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J Neurosci 13:413–422.

    PubMed  CAS  Google Scholar 

  • Koenig E, Adams P (1982) Local protein synthesizing activity in axonal fields regenerating in vitro. J Neurochem 39:386–400.

    Article  PubMed  CAS  Google Scholar 

  • Komarova YA, Akhmanova AS, Kojima S, Galjart N, Borisy GG (2002) Cytoplasmic linker proteins promote microtubule rescue in vivo. J Cell Biol 159:589–599.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn TB, Bamburg JR (2008) Tropomyosin and ADF/cofilin as collaborators and competitors. In: Gunning PW (ed) Tropomyosin. Landes Press, New York, NY.

    Google Scholar 

  • Kulisevsky J, Marti MJ, Ferrer I, Tolosa E (1988) Meige syndrome: neuropathology of a case. Mov Disord 3:170–175.

    Article  PubMed  CAS  Google Scholar 

  • Kurz AF (2005) Uncommon neurodegenerative causes of dementia. Int Psychogeriatr 17(Suppl 1):S35–S49.

    Article  PubMed  Google Scholar 

  • Laas R, Hagel C (1994) Hirano bodies and chronic alcoholism. Neuropathol Appl Neurobiol 20:12–21.

    Article  PubMed  CAS  Google Scholar 

  • Laggerbauer B, Ostareck D, Keidel EM, Ostareck-Lederer A, Fischer U (2001) Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum Mol Genet 10:329–338.

    Article  PubMed  CAS  Google Scholar 

  • Lambert DR, Goffinet AM (2001) Neuronal migration. Mech Dev 105:47–56.

    Article  Google Scholar 

  • Lee SK, Hollenbeck PJ (2003) Organization and translation of mRNA in sympathetic axons. J Cell Sci 116:4467–4478.

    Article  PubMed  CAS  Google Scholar 

  • Lee KJ, Jessell TM (1999) The specification of dorsal cell fates in the vertebrate central nervous system. Annu Rev Neurosci 22:261–294.

    Article  PubMed  CAS  Google Scholar 

  • Lee-Hoeflich ST, Causing CG, Podkowa M, Zhao X, Wrana JL, Attisano L (2004) Activation of LIMK1 by binding to the BMP receptor, BMPRII, regulates BMP-dependent dendritogenesis. EMBO J 23:4792–4801.

    Article  PubMed  CAS  Google Scholar 

  • Lewis MH (2004) Environmental complexity and central nervous system development and function. Ment Retard Dev Disabil Res Rev 10:91–95.

    Article  PubMed  Google Scholar 

  • Lim MK, Kawamura T, Ohsawa Y, Ohtsubo M, Asakawa S, Takayanagi A, Shimizu N (2007) Parkin interacts with LIM Kinase 1 and reduces its cofilin-phosphorylation activity via ubiquitination. Exp Cell Res 313:2858–2874.

    Article  PubMed  CAS  Google Scholar 

  • Lin L, Osan R, Tsien JZ (2006) Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes. Trends Neurosci 29:48–57.

    Article  PubMed  CAS  Google Scholar 

  • Lisman J (2003) Actin’s actions in LTP-induced synapse growth. Neuron 38:361–362.

    Article  PubMed  CAS  Google Scholar 

  • Liu AP, Fletcher DA (2006) Actin polymerization serves as a membrane domain switch in model lipid bilayers. Biophys J 91:4064–4070.

    Article  PubMed  CAS  Google Scholar 

  • Liu A, Niswander LA (2005) Bone morphogenetic protein signalling and vertebrate nervous system development. Nat Rev Neurosci 6:945–954.

    Article  PubMed  CAS  Google Scholar 

  • London M, Hausser M (2005) Dendritic computation. Annu Rev Neurosci 28:503–532.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo A, Yuan M, Zhang Z, Paganetti PA, Sturchler-Pierrat C, Staufenbiel M, Mautino J, Vigo FS, Sommer B, Yankner BA (2000) Amyloid beta interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer’s disease. Nat Neurosci 3:460–464.

    Article  PubMed  CAS  Google Scholar 

  • Lu DC, Soriano S, Bredesen DE, Koo EH (2003) Caspase cleavage of the amyloid precursor protein modulates amyloid beta-protein toxicity. J Neurochem 87:733–741.

    Article  PubMed  CAS  Google Scholar 

  • Maciver SK, Harrington CR (1995) Two actin binding proteins, actin depolymerizing factor and cofilin, are associated with Hirano bodies. Neuroreport 6:1985–1988.

    Article  PubMed  CAS  Google Scholar 

  • Maguire G, Connaughton V, Prat AG, Jackson GR Jr, Cantiello HF (1998) Actin cytoskeleton regulates ion channel activity in retinal neurons. Neuroreport 9:665–670.

    Article  PubMed  CAS  Google Scholar 

  • Majewska A, Tashiro A, Yuste R (2000) Regulation of spine calcium dynamics by rapid spine motility. J Neurosci 20:8262–8268.

    PubMed  CAS  Google Scholar 

  • Malgaroli A, Ting AE, Wendland B, Bergamaschi A, Villa A, Tsien RW, Scheller RH (1995) Presynaptic component of long-term potentiation visualized at individual hippocampal synapses. Science 268:1624–1628.

    Article  PubMed  CAS  Google Scholar 

  • Maloney MT, Bamburg JR (2007) Cofilin-mediated neurodegeneration in Alzheimer’s disease and other amyloidopathies. Mol Neurobiol 35:21–44.

    Article  PubMed  CAS  Google Scholar 

  • Maloney MT, Minamide LS, Kinley AW, Boyle JA, Bamburg JR (2005) Beta-secretase-cleaved amyloid precursor protein accumulates at actin inclusions induced in neurons by stress or amyloid beta: a feedforward mechanism for Alzheimer’s disease. J Neurosci 25:11313–11321.

    Article  PubMed  CAS  Google Scholar 

  • Mann G (1894) Histological changes induced in sympathetic, motor, and sensory nerve cells by functional activity (preliminary note). J Anat Physiol 29:100–108.

    PubMed  CAS  Google Scholar 

  • Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483.

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla M (1972) Structural abnormalities of the cerebral cortex in human chromosomal aberrations: a Golgi study. Brain Res 44:625–629.

    Article  PubMed  CAS  Google Scholar 

  • Maselli AG, Davis R, Furukawa R, Fechheimer M (2002) Formation of Hirano bodies in Dictyostelium and mammalian cells induced by expression of a modified form of an actin-crosslinking protein. J Cell Sci 115:1939–1949.

    PubMed  CAS  Google Scholar 

  • Masruha MR, Caboclo LO, Carrete H Jr, Cendes IL, Rodrigues MG, Garzon E, Yacubian EM, Sakamoto AC, Sheen V, Harney M, Neal J, Sean HR, Bodell A, Walsh C, Vilanova LC (2006) Mutation in filamin A causes periventricular heterotopia, developmental regression, and West syndrome in males. Epilepsia 47:211–214.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766.

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639.

    Article  PubMed  CAS  Google Scholar 

  • Matus A (1999) Postsynaptic actin and neuronal plasticity. Curr Opin Neurobiol 9:561–565.

    Article  PubMed  CAS  Google Scholar 

  • Matus A (2000) Actin-based plasticity in dendritic spines. Science 290:754–758.

    Article  PubMed  CAS  Google Scholar 

  • McKinney BC, Grossman AW, Elisseou NM, Greenough WT (2005) Dendritic spine abnormalities in the occipital cortex of C57BL/6 Fmr1 knockout mice. Am J Med Genet B Neuropsychiatr Genet 136:98–102.

    Google Scholar 

  • McQuaid JR, Brown SA, Aarons GA, Smith TL, Patterson TL, Schuckitt MA (2000) Correlates of life stress in an alcohol treatment sample. Addict Behav 25:131–137.

    Article  PubMed  CAS  Google Scholar 

  • Meberg PJ, Ono S, Minamide LS, Takahashi M, Bamburg JR (1998) Actin depolymerizing factor and cofilin phosphorylation dynamics: response to signals that regulate neurite extension. Cell Motil Cytoskeleton 39:172–190.

    Article  PubMed  CAS  Google Scholar 

  • Mendoza-Naranjo A, Gonzalez-Billault C, Maccioni RB (2007) Abeta1-42 stimulates actin polymerization in hippocampal neurons through Rac1 and Cdc42 Rho GTPases. J Cell Sci 120:279–288.

    Article  PubMed  CAS  Google Scholar 

  • Meng Y, Takahashi H, Meng J, Zhang Y, Lu G, Asrar S, Nakamura T, Jia Z (2004) Regulation of ADF/cofilin phosphorylation and synaptic function by LIM-kinase. Neuropharmacology 47:746–754.

    Article  PubMed  CAS  Google Scholar 

  • Meng YH, Zhang Y, Tregoubov V, Janus C, Cruz L, Jackson M, Lu WY, MacDonald JF, Wang JY, Falls DL, Jial ZP (2002) Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35:121–133.

    Article  PubMed  CAS  Google Scholar 

  • Meyer G, Feldman EL (2002) Signaling mechanisms that regulate actin-based motility processes in the nervous system. J Neurochem 83:490–503.

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A, Mervis CB, Sarpal D, Koch P, Steele S, Kohn P, Marenco S, Morris CA, Das S, Kippenhan S, Mattay VS, Weinberger DR, Berman KF (2005) Functional, structural, and metabolic abnormalities of the hippocampal formation in Williams syndrome. J Clin Invest 115:1888–1895.

    Article  PubMed  CAS  Google Scholar 

  • Minamide LS, Striegl AM, Boyle JA, Meberg PJ, Bamburg JR (2000) Neurodegenerative stimuli induce persistent ADF/cofilin–actin rods that disrupt distal neurite function. Nat Cell Biol 2:628–636.

    Article  PubMed  CAS  Google Scholar 

  • Mitake S, Ojika K, Hirano A (1997) Hirano bodies and Alzheimer’s disease. Kaohsiung J Med Sci 13:10–18.

    PubMed  CAS  Google Scholar 

  • Morishita W, Marie H, Malenka RC (2005) Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. Nat Neurosci 8:1043–1050.

    Article  PubMed  CAS  Google Scholar 

  • Moriyama K, Yahara I (2002) Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover. J Cell Sci 115:1591–1601.

    PubMed  CAS  Google Scholar 

  • Murrell J, Farlow M, Ghetti B, Benson MD (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science 254:97–99.

    Article  PubMed  CAS  Google Scholar 

  • Nakatani N, Ohnishi T, Iwamoto K, Watanabe A, Iwayama Y, Yamashita S, Ishitsuka Y, Moriyama K, Nakajima M, Tatebayashi Y, Akiyama H, Higuchi T, Kato T, Yoshikawa T (2007) Expression analysis of actin-related genes as an underlying mechanism for mood disorders. Biochem Biophys Res Commun 352:780–786.

    Article  PubMed  CAS  Google Scholar 

  • Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353.

    Article  PubMed  CAS  Google Scholar 

  • Nimchinsky EA, Yasuda R, Oertner TG, Svoboda K (2004) The number of glutamate receptors opened by synaptic stimulation in single hippocampal spines. J Neurosci 24:2054–2064.

    Article  PubMed  CAS  Google Scholar 

  • Nishida E, Iida K, Yonezawa N, Koyasu S, Yahara I, Sakai H (1987) Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc Natl Acad Sci USA 84:5262–5266.

    Article  PubMed  CAS  Google Scholar 

  • Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002) Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108:233–246.

    Article  PubMed  CAS  Google Scholar 

  • Offenhauser N, Castelletti D, Mapelli L, Soppo BE, Regondi MC, Rossi P, D’Angelo E, Frassoni C, Amadeo A, Tocchetti A, Pozzi B, Disanza A, Guarnieri D, Betsholtz C, Scita G, Heberlein U, Di Fiore PP (2006) Increased ethanol resistance and consumption in Eps8 knockout mice correlates with altered actin dynamics. Cell 127:213–226.

    Article  PubMed  CAS  Google Scholar 

  • Ohta Y, Nishida E, Sakai H, Miyamoto E (1989) Dephosphorylation of cofilin accompanies heat shock-induced nuclear accumulation of cofilin. J Biol Chem 264:16143–16148.

    PubMed  CAS  Google Scholar 

  • Okamoto K, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7:1104–1112.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto K, Narayanan R, Lee SH, Murata K, Hayashi Y (2007) The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proc Natl Acad Sci USA 104:6418–6423.

    Article  PubMed  CAS  Google Scholar 

  • Ono S, Inoue K, Mannen T, Kanda F, Jinnai K, Takahashi K (1987) Neuropathological changes of the brain in myotonic dystrophy – some new observations. J Neurol Sci 81:301–320.

    Article  PubMed  CAS  Google Scholar 

  • Ouyang Y, Wong M, Capani F, Rensing N, Lee CS, Liu Q, Neusch C, Martone ME, Wu JY, Yamada K, Ellisman MH, Choi DW (2005) Transient decrease in F-actin may be necessary for translocation of proteins into dendritic spines. Eur J Neurosci 22:2995–3005.

    Article  PubMed  Google Scholar 

  • Ouyang Y, Yang XF, Hu XY, Erbayat-Altay E, Zeng LH, Lee JM, Wong M (2007) Hippocampal seizures cause depolymerization of filamentous actin in neurons independent of acute morphological changes. Brain Res 1143:238–246.

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell WT, Warren ST (2002) A decade of molecular studies of fragile X syndrome. Annu Rev Neurosci 25:315–338.

    Article  PubMed  CAS  Google Scholar 

  • Pak CW, Flynn KC, Bamburg JR (2008) Actin-binding proteins take the reins in growth cones. Nat Rev Neurosci 9:136–147.

    Article  PubMed  CAS  Google Scholar 

  • Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313:1141–1144.

    Article  PubMed  CAS  Google Scholar 

  • Pena CE, Katoh A (1989) Intracytoplasmic eosinophilic inclusions in the neurons of the central nervous system. Acta Neuropathol (Berl) 79:73–77.

    Article  CAS  Google Scholar 

  • Percipalle P, Visa N (2006) Molecular functions of nuclear actin in transcription. J Cell Biol 172:967–971.

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Kaiserman-Abramof IR (1970) The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am J Anat 127:321–355.

    Article  PubMed  CAS  Google Scholar 

  • Posern G, Treisman R (2006) Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 16:588–596.

    Article  PubMed  CAS  Google Scholar 

  • Preus M (1984) The Williams syndrome: objective definition and diagnosis. Clin Genet 25:422–428.

    Article  PubMed  CAS  Google Scholar 

  • Price DL, Sisodia SS, Gandy SE (1995a) Amyloid beta amyloidosis in Alzheimer’s disease. Curr Opin Neurol 8:268–274.

    Article  PubMed  CAS  Google Scholar 

  • Price DL, Sisodia SS, Gandy SE (1995b) Amyloid beta amyloidosis in Alzheimer’s disease. Curr Opin Neurol 8:268–274.

    Article  PubMed  CAS  Google Scholar 

  • Purpura DP (1974) Dendritic spine “dysgenesis” and mental retardation. Science 186:1126–1128.

    Article  PubMed  CAS  Google Scholar 

  • Ramakers GJ (2002) Rho proteins, mental retardation and the cellular basis of cognition. Trends Neurosci 25:191–199.

    Article  PubMed  CAS  Google Scholar 

  • Rex CS, Lin CY, Kramar EA, Chen LY, Gall CM, Lynch G (2007) Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult hippocampus. J Neurosci 27:3017–3029.

    Article  PubMed  CAS  Google Scholar 

  • Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754.

    Article  PubMed  CAS  Google Scholar 

  • Rossoll W, Jablonka S, Andreassi C, Kroning AK, Karle K, Monani UR, Sendtner M (2003) Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol 163:801–812.

    Article  PubMed  CAS  Google Scholar 

  • Sanger JW, Sanger JM, Kreis TE, Jockusch BM (1980) Reversible translocation of cytoplasmic actin into the nucleus caused by dimethyl sulfoxide. Proc Natl Acad Sci USA 77:5268–5272.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt ML, Lee VM, Trojanowski JQ (1989) Analysis of epitopes shared by Hirano bodies and neurofilament proteins in normal and Alzheimer’s disease hippocampus. Lab Invest 60:513–522.

    PubMed  CAS  Google Scholar 

  • Schochet SS Jr, Lampert PW, Lindenberg R (1968) Fine structure of the Pick and Hirano bodies in a case of Pick’s disease. Acta Neuropathol 11:330–337.

    Article  PubMed  Google Scholar 

  • Schochet SS Jr, McCormick WF (1972) Ultrastructure of Hirano bodies. Acta Neuropathol (Berl) 21:50–60.

    Article  Google Scholar 

  • Schubert FR, Tremblay P, Mansouri A, Faisst AM, Kammandel B, Lumsden A, Gruss P, Dietrich S (2001) Early mesodermal phenotypes in splotch suggest a role for Pax3 in the formation of epithelial somites. Dev Dyn 222:506–521.

    Article  PubMed  CAS  Google Scholar 

  • Schuyler SC, Pellman D (2001) Microtubule “plus-end-tracking proteins”: the end is just the beginning. Cell 105:421–424.

    Article  PubMed  CAS  Google Scholar 

  • Sekino Y, Kojima N, Shirao T (2007) Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem Int 51:92–104.

    Article  PubMed  CAS  Google Scholar 

  • Setoguti T, Esumi H, Shimizu T (1974) Specific organization of intracytoplasmic filaments in the dog testicular interstitial cell. Cell Tissue Res 148:493–497.

    Article  PubMed  CAS  Google Scholar 

  • Sheen VL, Basel-Vanagaite L, Goodman JR, Scheffer IE, Bodell A, Ganesh VS, Ravenscroft R, Hill RS, Cherry TJ, Shugart YY, Barkovich J, Straussberg R, Walsh CA (2004) Etiological heterogeneity of familial periventricular heterotopia and hydrocephalus. Brain Dev 26:326–334.

    Article  PubMed  Google Scholar 

  • Shen K, Meyer T (1999) Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284:162–166.

    Article  PubMed  CAS  Google Scholar 

  • Shestakova EA, Singer RH, Condeelis J (2001) The physiological significance of beta-actin mRNA localization in determining cell polarity and directional motility. Proc Natl Acad Sci USA 98:7045–7050.

    Article  PubMed  CAS  Google Scholar 

  • Shin DM, Zhao XS, Zeng WZ, Mozhayeva M, Muallem S (2000) The mammalian Sec6/8 complex interacts with Ca2+ signaling complexes and regulates their activity. J Cell Biol 150:1101–1112.

    Article  PubMed  CAS  Google Scholar 

  • Sima AA, Hinton D (1983) Hirano-bodies in the distal symmetric polyneuropathy of the spontaneously diabetic BB-Wistar rat. Acta Neurol Scand 68:107–112.

    Article  PubMed  CAS  Google Scholar 

  • Singer-Lahat D, Sheinin A, Chikvashvili D, Tsuk S, Greitzer D, Friedrich R, Feinshreiber L, Ashery U, Benveniste M, Levitan ES, Lotan I (2007) K+ channel facilitation of exocytosis by dynamic interaction with syntaxin. J Neurosci 27:1651–1658.

    Article  PubMed  CAS  Google Scholar 

  • Sisodia SS, Price DL (1995) Role of the beta-amyloid protein in Alzheimer’s disease. FASEB J 9:366–370.

    PubMed  CAS  Google Scholar 

  • Solomon A, Kareholt I, Ngandu T, Winblad B, Nissinen A, Tuomilehto J, Soininen H, Kivipelto M (2007) Serum cholesterol changes after midlife and late-life cognition: twenty-one-year follow-up study. Neurology 68:751–756.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P, Kisvarday ZF, Martin KA, Whitteridge D (1983) Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat. Neuroscience 10:261–294.

    Article  PubMed  CAS  Google Scholar 

  • Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LS (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307:1282–1288.

    Article  PubMed  CAS  Google Scholar 

  • Sun M, Northup N, Marga F, Huber T, Byfield FJ, Levitan I, Forgacs G (2007a) The effect of cellular cholesterol on membrane–cytoskeleton adhesion. J Cell Sci 120:2223–2231.

    Article  PubMed  CAS  Google Scholar 

  • Sun M, Thomas MJ, Herder R, Bofenkamp ML, Selleck SB, O’Connor MB (2007b) Presynaptic contributions of chordin to hippocampal plasticity and spatial learning. J Neurosci 27:7740–7750.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Nishiyama K, Yamamoto A, Inazawa J, Iwaki T, Yamada T, Kanazawa I, Sakaki Y (2000) Molecular cloning of a novel apoptosis-related gene, human Nap1 (NCKAP1), and its possible relation to Alzheimer disease. Genomics 63:246–254.

    Article  PubMed  CAS  Google Scholar 

  • Svoboda K, Tank DW, Denk W (1996) Direct measurement of coupling between dendritic spines and shafts. Science 272:716–719.

    Article  PubMed  CAS  Google Scholar 

  • Takumi T (2007) [Spine biology in psychiatric diseases]. Nihon Shinkei Seishin Yakurigaku Zasshi 27:103–107.

    Google Scholar 

  • Tamkun MM, O’Connell KM, Rolig AS (2007) A cytoskeletal-based perimeter fence selectively corrals a sub-population of cell surface Kv2.1 channels. J Cell Sci 120:2413–2423.

    Article  PubMed  CAS  Google Scholar 

  • Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120:545–555.

    Article  PubMed  CAS  Google Scholar 

  • Tavazoie SF, Alvarez VA, Ridenour DA, Kwiatkowski DJ, Sabatini BL (2005) Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat Neurosci 8:1727–1734.

    Article  PubMed  CAS  Google Scholar 

  • Timm T, Matenia D, Li XY, Griesshaber B, Mandelkow EM (2006) Signaling from MARK to tau: regulation, cytoskeletal crosstalk, and pathological phosphorylation. Neurodegener Dis 3:207–217.

    Article  PubMed  CAS  Google Scholar 

  • Toda S, Shen HW, Peters J, Cagle S, Kalivas PW (2006) Cocaine increases actin cycling: effects in the reinstatement model of drug seeking. J Neurosci 26:1579–1587.

    Article  PubMed  CAS  Google Scholar 

  • Tomonaga M (1974) Ultrastructure of Hirano bodies. Acta Neuropathol (Berl) 28:365–366.

    Article  CAS  Google Scholar 

  • Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ (2006) Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol 572:477–492.

    Article  PubMed  CAS  Google Scholar 

  • Vadlamudi RK, Li F, Adam L, Nguyen D, Ohta Y, Stossel TP, Kumar R (2002) Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol 4:681–690.

    Article  PubMed  CAS  Google Scholar 

  • Vartiainen MK, Guettler S, Larijani B, Treisman R (2007) Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316:1749–1752.

    Article  PubMed  CAS  Google Scholar 

  • Vaughn JE (1989) Fine structure of synaptogenesis in the vertebrate central nervous system. Synapse 3:255–285.

    Article  PubMed  CAS  Google Scholar 

  • Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzut A, Reiner O, Richards S, Victoria MF, Zhang FP (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65:905–914.

    Article  PubMed  CAS  Google Scholar 

  • Verma P, Chierzi S, Codd AM, Campbell DS, Meyer RL, Holt CE, Fawcett JW (2005) Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J Neurosci 25:331–342.

    Article  PubMed  CAS  Google Scholar 

  • Wang JY, Frenzel KE, Wen D, Falls DL (1998) Transmembrane neuregulins interact with LIM kinase 1, a cytoplasmic protein kinase implicated in development of visuospatial cognition. J Biol Chem 273:20525–20534.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Shaw WR, Tsang HT, Reid E, O’Kane CJ (2007) Drosophila spichthyin inhibits BMP signaling and regulates synaptic growth and axonal microtubules. Nat Neurosci 10:177–185.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Shibasaki F, Mizuno K (2005) Calcium signal-induced cofilin dephosphorylation is mediated by slingshot via calcineurin. J Biol Chem 280:12683–12689.

    Article  PubMed  CAS  Google Scholar 

  • Wen Z, Han L, Bamburg JR, Shim S, Ming GL, Zheng JQ (2007) BMP gradients steer nerve growth cones by a balancing act of LIM kinase and slingshot phosphatase on ADF/cofilin. J Cell Biol 178:107–119.

    Article  PubMed  CAS  Google Scholar 

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097.

    Article  PubMed  CAS  Google Scholar 

  • Wiggan O, Shaw AE, Bamburg JR (2006) Essential requirement for Rho family GTPase signaling in Pax3 induced mesenchymal–epithelial transition. Cell Signal 18:1501–1514.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson L, Kolle G, Wen D, Piper M, Scott J, Little M (2003) CRIM1 regulates the rate of processing and delivery of bone morphogenetic proteins to the cell surface. J Biol Chem 278:34181–34188.

    Article  PubMed  CAS  Google Scholar 

  • Williams MR, Markey JC, Doczi MA, Morielli AD (2007) An essential role for cortactin in the modulation of the potassium channel Kv1.2. Proc Natl Acad Sci USA 104:17412–17417.

    Article  PubMed  Google Scholar 

  • Willis D, Li KW, Zheng JQ, Chang JH, Smit A, Kelly T, Merianda TT, Sylvester J, Van Minnen J, Twiss JL (2005) Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J Neurosci 25:778–791.

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa N, Goto A (1971) Dystonia musculorum deformans. Analysis with electromyography. J Neurol Sci 13:39–65.

    Article  PubMed  CAS  Google Scholar 

  • Yang EJ, Yoon JH, Min DS, Chung KC (2004) LIM kinase 1 activates cAMP-responsive element-binding protein during the neuronal differentiation of immortalized hippocampal progenitor cells. J Biol Chem 279:8903–8910.

    Article  PubMed  CAS  Google Scholar 

  • Yokota Y, Ring C, Cheung R, Pevny L, Anton ES (2007) Nap1-regulated neuronal cytoskeletal dynamics is essential for the final differentiation of neurons in cerebral cortex. Neuron 54:429–445.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa S, Thomas JB (2004) Secreted cell signaling molecules in axon guidance. Curr Opin Neurobiol 14:45–50.

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Kohler C, Hemmerich P, Grosse F (2004) Nuclear DNA helicase II (RNA helicase A) binds to an F-actin containing shell that surrounds the nucleolus. Exp Cell Res 293:248–258.

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Ma QL, Calon F, Harris-White ME, Yang F, Lim GP, Morihara T, Ubeda OJ, Ambegaokar S, Hansen JE, Weisbart RH, Teter B, Frautschy SA, Cole GM (2006) Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nat Neurosci 9:234–242.

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Homma KJ, Poo MM (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44:749–757.

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Zeng X, Huang B, Hao S (2004) Actin is closely associated with RNA polymerase II and involved in activation of gene transcription. Biochem Biophys Res Commun 321:623–630.

    Article  PubMed  CAS  Google Scholar 

  • Zito K, Knott G, Shepherd GM, Shenolikar S, Svoboda K (2004) Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton. Neuron 44:321–334.

    Article  PubMed  CAS  Google Scholar 

  • Ziv NE, Smith SJ (1996) Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17:91–102.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the National Institutes of Health, grants NS40371 (JRB) and NS43115 (MTM and JRB) from the National Institute of Neurological Disorders and Stroke and HD055745 (MTM) from the National Institute of Child Health and Human Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Bamburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bernstein, B.W., Maloney, M.T., Bamburg, J.R. (2011). Actin and Diseases of the Nervous System. In: Gallo, G., Lanier, L. (eds) Neurobiology of Actin. Advances in Neurobiology, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7368-9_11

Download citation

Publish with us

Policies and ethics