Skip to main content

Actin at the Synapse: Contribution to Pre- and Postsynaptic Functions

  • Chapter
  • First Online:
  • 768 Accesses

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 5))

Abstract

Synapses are specialized intercellular junctions through which one neuron sends signals to another neuron or a non-neuronal excitable cell. In the central nervous system (CNS), electrical signals can be propagated across neurons via either electrical or chemical synapses. An electrical synapse is a direct electronic coupling between two adjacent cells via a specialized apparatus called gap junction (Bennett and Zukin 2004. The term “synapses” often simply refers to chemical synapses because they are the most common synapses in animals and the term “synapse” was historically introduced to describe chemical synapses (Cowan and Kandel 2001, Boeckers 2006). A typical chemical synapse contains the presynaptic terminus, synaptic cleft, and postsynaptic membrane. Electrical signals are transmitted from a presynaptic neuron to a postsynaptic neuron when neurotransmitters released from the presynaptic terminus cause postsynaptic depolarization in excitatory synapses or hyperpolarization in inhibitory synapses. Actin and its binding partners can modulate presynaptic functions by altering the release of neurotransmitters (Doussau and Augustine 2000, Schweizer and Ryan 2006) and can also modulate the strength of postsynaptic responses by altering the morphology and function of dendritic spines (Carlisle and Kennedy 2005, Kopec and Malinow 2006, Tada and Sheng 2006).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams AE, Johnson DI, Longnecker RM, Sloat BF, Pringle JR (1990) CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J Cell Biol 111:131–142.

    Article  PubMed  CAS  Google Scholar 

  • Allison DW, Gelfand VI, Spector I, Craig AM (1998) Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J Neurosci 18:2423–2436.

    PubMed  CAS  Google Scholar 

  • Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–809.

    Article  PubMed  CAS  Google Scholar 

  • Becherer U, Rettig J (2006) Vesicle pools, docking, priming, and release. Cell Tissue Res 326: 393–407.

    Article  PubMed  Google Scholar 

  • Benfenati F, Neyroz P, Bahler M, Masotti L, Greengard P (1990) Time-resolved fluorescence study of the neuron-specific phosphoprotein synapsin I. Evidence for phosphorylation-dependent conformational changes. J Biol Chem 265:12584–12595.

    PubMed  CAS  Google Scholar 

  • Bennett MV, Zukin RS (2004) Electrical coupling and neuronal synchronization in the Mammalian brain. Neuron 41:495–511.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein BW, Bamburg JR (1989) Cycling of actin assembly in synaptosomes and neurotransmitter release. Neuron 3:257–265.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein BW, Dewit M, Bamburg JR (1998) Actin disassembles reversibly during electrically induced recycling of synaptic vesicles in cultured neurons. Mol Brain Res 53:236–251.

    Article  PubMed  CAS  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39.

    Article  PubMed  CAS  Google Scholar 

  • Boeckers TM (2006) The postsynaptic density. Cell Tissue Res 326:409–422.

    Article  PubMed  CAS  Google Scholar 

  • Boeckers TM, Mameza MG, Kreutz MR, Bockmann J, Weise C, Buck F, Richter D, Gundelfinger ED, Kreienkamp HJ (2001) Synaptic scaffolding proteins in rat brain. Ankyrin repeats of the multidomain Shank protein family interact with the cytoskeletal protein alpha-fodrin. J Biol Chem 276:40104–40112.

    Article  CAS  Google Scholar 

  • Brown TC, Tran IC, Backos DS, Esteban JA (2005) NMDA receptor-dependent activation of the small GTPase Rab5 drives the removal of synaptic AMPA receptors during hippocampal LTD. Neuron 45:81–94.

    Article  PubMed  CAS  Google Scholar 

  • Carlisle HJ, Kennedy MB (2005) Spine architecture and synaptic plasticity. Trends Neurosci 28:182–187.

    Article  PubMed  CAS  Google Scholar 

  • Carroll RC, Beattie EC, Xia H, Luscher C, Altschuler Y, Nicoll RA, Malenka RC, Zastrow von M (1999) Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc Natl Acad Sci USA 96:14112–14117.

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli B, Hurlbut WP, Mauro A (1973) Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol 57:499–524.

    Article  PubMed  CAS  Google Scholar 

  • Charrier C, Ehrensperger MV, Dahan M, Levi S, Triller A (2006) Cytoskeleton regulation of glycine receptor number at synapses and diffusion in the plasma membrane. J Neurosci 26:8502–8511.

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Chetkovich DM, Petralia RS, Sweeney NT, Kawasaki Y, Wenthold RJ, Bredt DS, Nicoll RA (2000) Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408:936–943.

    Article  PubMed  CAS  Google Scholar 

  • Chen HJ, Rojas-Soto M, Oguni A, Kennedy MB (1998) A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron 20:895–904.

    Article  PubMed  CAS  Google Scholar 

  • Chicurel ME, Harris KM (1992) Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J Comp Neurol 325:169–182.

    Article  PubMed  CAS  Google Scholar 

  • Cho KO, Hunt CA, Kennedy MB (1992) The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9:929–942.

    Article  PubMed  CAS  Google Scholar 

  • Christopherson KS, Sweeney NT, Craven SE, Kang R, El-Husseini A-D, Bredt DS (2003) Lipid- and protein-mediated multimerization of PSD-95: implications for receptor clustering and assembly of synaptic protein networks. J Cell Sci 116:3213–3219.

    Article  PubMed  CAS  Google Scholar 

  • Chu P, Murray S, Lissin D, von Zastrow M (1997) Delta and kappa opioid receptors are differentially regulated by dynamin-dependent endocytosis when activated by the same alkaloid agonist. J Biol Chem 272:27124–27130.

    Article  PubMed  CAS  Google Scholar 

  • Cohen RS, Blomberg F, Berzins K, Siekevitz P (1977) The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J Cell Biol 74:181–203.

    Article  PubMed  CAS  Google Scholar 

  • Cohen RS, Chung SK, Pfaff DW (1985) Immunocytochemical localization of actin in dendritic spines of the cerebral cortex using colloidal gold as a probe. Cell Mol Neurobiol 5:271–284.

    Article  PubMed  CAS  Google Scholar 

  • Cole JC, Villa BR, Wilkinson RS (2000) Disruption of actin impedes transmitter release in snake motor terminals. J Physiol 525:579–586.

    Article  PubMed  CAS  Google Scholar 

  • Cotman CW, Banker G, Churchill L, Taylor D (1974) Isolation of postsynaptic densities from rat brain. J Cell Biol 63:441–455.

    Article  PubMed  CAS  Google Scholar 

  • Cowan WM, Kandel ER (2001) A brief history of synapses and synaptic transmissioin. In: Cowan WM, Südhof TC, Stevens CF (ed) Synapses. The Johns Hopkins University Press, Baltimore, MD, p. 1–87.

    Google Scholar 

  • Coyle JE, Nikolov DB (2003) GABARAP: lessons for synaptogenesis. Neuroscientist 9:205–216.

    Article  PubMed  CAS  Google Scholar 

  • Craig AM, Banker G, Chang W, McGrath ME, Serpinskaya AS (1996) Clustering of gephyrin at GABAergic but not glutamatergic synapses in cultured rat hippocampal neurons. J Neurosci 16:3166–3177.

    PubMed  CAS  Google Scholar 

  • Dailey ME, Smith SJ (1996) The dynamics of dendritic structure in developing hippocampal slices. J Neurosci 16:983–2994.

    Google Scholar 

  • Derkach VA, Oh MC, Guire ES, Soderling TR (2007) Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci 8:101–113.

    Article  PubMed  CAS  Google Scholar 

  • Derry JM, Ochs HD, Francke U (1994) Isolation of a novel gene mutated in Wiskott–Aldrich syndrome. Cell 78:635–644.

    Article  PubMed  CAS  Google Scholar 

  • Dong H, O‘Brien RJ, Fung ET, Lanahan AA, Worley PF, Huganir RL (1997) GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386:279–284.

    Article  PubMed  CAS  Google Scholar 

  • Doussau F, Augustine GJ (2000) The actin cytoskeleton and neurotransmitter release: an overview. Biochimie 82:353–363.

    Article  PubMed  CAS  Google Scholar 

  • Drenckhahn D, Kaiser HW (1983) Evidence for the concentration of F-actin and myosin in synapses and in the plasmalemmal zone of axons. Eur J Cell Biol 31:235–240.

    PubMed  CAS  Google Scholar 

  • Dunaevsky A, Tashiro A, Majewska A, Mason C, Yuste R (1999) Developmental regulation of spine motility in the mammalian central nervous system. Proc Natl Acad Sci USA 96: 13438–13443.

    Article  PubMed  CAS  Google Scholar 

  • Durand G, Kovalchuk Y, Konnerth A (1996) Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381:71–75.

    Article  PubMed  CAS  Google Scholar 

  • Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399:66–70.

    Article  PubMed  CAS  Google Scholar 

  • Essrich C, Lorez M, Benson JA, Fritschy JM, Lüscher B (1998) Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat Neurosci 1: 563–571.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Peruchena C, Navas S, Montes MA, Alvarez de Toledo G (2005) Fusion pore regulation of transmitter release. Brain Res Brain Res Rev 49:406–415.

    Article  PubMed  CAS  Google Scholar 

  • Fifkova E (1985) Actin in the nervous system. Brain Res 356:187–215.

    PubMed  CAS  Google Scholar 

  • Fischer M, Kaech S, Wagner U, Brinkhaus H, Matus A (2000) Glutamate receptors regulate actin-based plasticity in dendritic spines. Nature Neurosci 3:887–894.

    Article  PubMed  CAS  Google Scholar 

  • Fu WY, Chen Y, Sahin M, Zhao XS, Shi L, Bikoff JB, Lai KO, Yung WH, Fu AK, Greenberg ME, Ip NY (2007) Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat Neurosci 10:67–76.

    Article  PubMed  CAS  Google Scholar 

  • Fukata Y, Tzingounis AV, Trinidad JC, Fukata M, Burlingame AL, Nicoll RA, Bredt DS (2005) Molecular constituents of neuronal AMPA receptors. J Cell Biol 9:399–404.

    Article  CAS  Google Scholar 

  • Funke L, Dokoji S, Bredt DS (2005) Membrane associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem 74:219–245.

    Article  PubMed  CAS  Google Scholar 

  • Gartner U, Alpar A, Behrbohm J, Heumann R, Arendt T (2005) Enhanced Ras activity promotes spine formation in synRas mice neocortex. Neuroreport 16:149–152.

    Article  PubMed  Google Scholar 

  • Gray EG (1983) Neurotransmitter release mechanisms and microtubules. Proc R Soc Lond B Biol Sci 218:253–258.

    Article  PubMed  CAS  Google Scholar 

  • Gotow T, Miyaguchi K, Hashimoto PH (1991) Cytoplasmic architecture of the axon terminal: filamentous strands specifically associated with synaptic vesicles. Neuroscience 40:587–598.

    Article  PubMed  CAS  Google Scholar 

  • Groc L, Gustafsson B, Hanse E (2006) AMPA signalling in nascent glutamatergic synapses: there and not there!. Trends Neurosci 29:132–139.

    Article  PubMed  CAS  Google Scholar 

  • Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420:812–816.

    Article  PubMed  CAS  Google Scholar 

  • Hanus C, Ehrensperger MV, Triller A (2006) Activity-dependent movements of postsynaptic scaffolds at inhibitory synapses. J Neurosci 26:4586–4595.

    Article  PubMed  CAS  Google Scholar 

  • Harata NC, Aravanis AM, Tsien RW (2006) Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion. J Neurochem 97:1546–1570.

    Article  PubMed  CAS  Google Scholar 

  • Hasson T, Mooseker MS (1997) The growing family of myosin motors and their role in neurons and sensory cells. Curr Opin. Neurobiol 7:615–623.

    Article  PubMed  CAS  Google Scholar 

  • Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371.

    Article  PubMed  CAS  Google Scholar 

  • Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ (2001) The architecture of active zone material at the frog’s neuromuscular junction. Nature 409:479–484.

    Article  PubMed  CAS  Google Scholar 

  • He L, Wu XS, Mohan R, Wu LG (2006) Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 444:102–105.

    Article  PubMed  CAS  Google Scholar 

  • Henkemeyer M, Itkis OS, Ngo M, Hickmott PW, Ethell IM (2003) Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J Cell Biol 163:1313–1326.

    Article  PubMed  CAS  Google Scholar 

  • Henkemeyer M, Orioli D, Henderson JT, Saxton TM, Roder J, Pawson T, Klein R (1996) Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86:5–46.

    Article  Google Scholar 

  • Hering H, Sheng M (2001) Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci 2:880–888.

    Article  PubMed  CAS  Google Scholar 

  • Hering H, Sheng M (2003) Activity-dependent redistribution and essential role of cortactin in dendritic spine morphogenesis. J Neurosci 23:11759–11769.

    PubMed  CAS  Google Scholar 

  • Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57:315–344.

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker S, Benfenati F, Doussau F, Nairn AC, Czernik AJ, Augustine GJ, Greengard P (2005) Structural domains involved in the regulation of transmitter release by synapsins. J Neurosci 25:2658–2669.

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker S, Schweizer FE, Kao HT, Czernik AJ, Greengard P, Augustine GJ (1998) Two sites of action for synapsin domain E in regulating neurotransmitter release. Nat Neurosci 1:29–35.

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker S, Pieribone VA, Czernik AJ, Kao HT, Augustine GJ, Greengard P (1999) Synapsins as regulators of neurotransmitter release. Philos Trans R Soc Lond B Biol Sci 354:269–279.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N, Sobue K, Kanda K, Harada A, Yorifuji H (1989) The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. Journal of Cell Biology 108: 111–126.

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108.

    Article  PubMed  CAS  Google Scholar 

  • Holtmaat A, Wilbrecht L, Knott GW, Welker E, Svoboda K (2006) Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441:979–983.

    Article  PubMed  CAS  Google Scholar 

  • Hsueh YP, Sheng M (1999) Requirement of N-terminal cysteines of PSD-95 for PSD-95 multimerization and ternary complex formation, but not for binding to potassium channel Kv1.4. J Biol Chem 74:532–536.

    Article  Google Scholar 

  • Hu XD, Huang Q, Roadcap DW, Shenolikar SS, Xia H (2006) Actin-associated neurabin-protein phosphatase-1 complex regulates hippocampal plasticity. J Neurochem 98:1841–1851.

    Article  PubMed  CAS  Google Scholar 

  • Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 3:661–669.

    Article  PubMed  CAS  Google Scholar 

  • Humeau Y, Doussau F, Vitiello F, Greengard P, Benfenati F, Poulain B (2001) Synapsin controls both reserve and releasable synaptic vesicle pools during neuronal activity and short-term plasticity in Aplysia. J Neurosci 21:4195–4206.

    PubMed  CAS  Google Scholar 

  • Isaac JT, Nicoll RA, Malenka RC (1995) Evidence for silent synapses: implications for the expression of LTP. Neuron 15:427–434.

    Article  PubMed  CAS  Google Scholar 

  • Jin W, Ge WP, Xu J, Cao M, Peng L, Yung W, Liao D, Duan S, Zhang M, Xia J (2006) Lipid binding regulates synaptic targeting of PICK1, AMPA receptor trafficking, and synaptic plasticity. J Neurosci 26:2380–2390.

    Article  PubMed  CAS  Google Scholar 

  • Job C, Lagnado L (1998) Calcium and protein kinase C regulate the actin cytoskeleton in the synaptic terminal of retinal bipolar cells. J Cell Biol 143:1661–1672.

    Article  PubMed  CAS  Google Scholar 

  • Jordan R, Lemke EA, Klingauf J (2005) Visualization of synaptic vesicle movement in intact synaptic boutons using fluorescence fluctuation spectroscopy. Biophys J 89:2091–2102.

    Article  PubMed  CAS  Google Scholar 

  • Kaech S, Parmar H, Roelandse M, Bornmann C, Matus A (2001) Cytoskeletal microdifferentiation: a mechanism for organizing morphological plasticity in dendrites. Proc Natl Acad Sci USA 98:7086–7092.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MB (2000) Signal-processing machines at the postsynaptic density. Science 290: 750–754.

    Article  PubMed  CAS  Google Scholar 

  • Kim CH, Lisman JE (1999) A role of actin filament in synaptic transmission and long-term potentiation. J Neurosci 19:4314–4324.

    PubMed  CAS  Google Scholar 

  • Kim E, Naisbitt S, Hsueh YP, Rao A, Rothschild A, Craig AM, Sheng M (1997) GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J Cell Biol 136:669–678.

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Sheng M (2004) PDZ domain proteins of synapses. Nat Rev Neurosci 5:771–781.

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Liao D, Lau LF, Huganir RL (1998) SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20:683–691.

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Sung JY, Ceglia I, Lee KW, Ahn JH, Halford JM, Kim AM, Kwak SP, Park JB, Ho RS, Schenck A, Bardoni B, Scott JD, Nairn AC, Greengard P (2006) Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature 442:814–817.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch J, Wolters I, Triller A, Betz H (1993) Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366:745–748.

    Article  PubMed  CAS  Google Scholar 

  • Kistner U, Wenzel BM, Veh RW, Cases-Langhoff C, Garner AM, Appeltauer U, Voss B, Gundelfinger ED, Garner CC (1993) SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dlg-A. J Biol Chem 5:4580–4583.

    Google Scholar 

  • Klein R (2004) Eph/ephrin signaling in morphogenesis, neural development and plasticity. Curr Opin Cell Biol 16:580–589.

    Article  PubMed  CAS  Google Scholar 

  • Klyachko VA, Jackson MB (2002) Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 418:89–92.

    Article  PubMed  CAS  Google Scholar 

  • Kneussel M, Betz H (2000) Clustering of inhibitory neurotransmitter receptors at developing postsynaptic sites: the membrane activation model. Trends Neurosci 23:429–435.

    Article  PubMed  CAS  Google Scholar 

  • Kneussel M, Loebrich S (2007) Trafficking and synaptic anchoring of ionotropic inhibitory neurotransmitter receptors. Biol Cell 99:297–309.

    Article  PubMed  CAS  Google Scholar 

  • Korkotian E, Segal M (2001) Regulation of dendritic spine motility in cultured hippocampal neurons. J Neurosci 21:6115–6124.

    PubMed  CAS  Google Scholar 

  • Kopec C, Malinow R (2006) Neuroscience. Matters of size. Science 314:1554–1555.

    Article  PubMed  CAS  Google Scholar 

  • Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 22:1737–1740.

    Article  Google Scholar 

  • Kramar EA, Lin B, Rex CS, Gall CM, Lynch G (2006) Integrin-driven actin polymerization consolidates long-term potentiation. Proc Natl Acad Sci U S A 103:5579–5584.

    Article  PubMed  CAS  Google Scholar 

  • Krucker T, Siggins GR, Halpain S (2000) Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc Natl Acad Sci USA 97:6856–6861.

    Article  PubMed  CAS  Google Scholar 

  • Kuriu T, Inoue A, et al. (2006) Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. J Neurosci 26:7693–7706.

    Article  PubMed  CAS  Google Scholar 

  • Kuromi H, Kidokoro Y (1998) Two distinct pools of synaptic vesicles in single presynaptic boutons in temperature-sensitive drosophila mutant, shibire. Neuron 20:917–925.

    Article  PubMed  CAS  Google Scholar 

  • Landis DM, Hall AK, Weinstein LA, Reese TS (1998) The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron 1:201–209.

    Article  Google Scholar 

  • Landis DM, Reese TS (1983) Cytoplasmic organization in cerebellar dendritic spines. J Cell Biol 97:1169–1178.

    Article  PubMed  CAS  Google Scholar 

  • Langford GM (2002) Myosin-V, a versatile motor for short-range vesicle transport. Traffic 3: 859–865.

    Article  PubMed  CAS  Google Scholar 

  • Leonard AS, Davare MA, Horne MC, Garner CC, Hell JW (1998) SAP97 is associated with the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit. J Biol Chem 273:19518–19524.

    Article  PubMed  CAS  Google Scholar 

  • Lendvai B, Stern EA, Chen B, Svoboda K (2000) Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404:876–881.

    Article  PubMed  CAS  Google Scholar 

  • Li L, Chin LS, Shupliakov O, Brodin L, Sihra TS, Hvalby O, Jensen V, Zheng D, Mc Namara JO, Greengard P, Andersen P (1995) Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice. Proc Natl Acad Sci USA 92:9235–9239.

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Aizenman CD, Cline HT (2002) Regulation of rho GTPases by crosstalk and neuronal activity in vivo. Neuron 33:741–750.

    Article  PubMed  CAS  Google Scholar 

  • Liao D, Grigoriants OO, Wang W, Wiens K, Loh HH, Law PY (2007) Distinct effects of individual opioids on the morphology of spines depend upon the internalization of mu opioid receptors. Mol Cell Neurosci 35:456–469.

    Article  PubMed  CAS  Google Scholar 

  • Liao D, Hessler NA, Malinow R (1995) Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375:400–404.

    Article  PubMed  CAS  Google Scholar 

  • Liao D, Zhang X, O‘Brien R, Ehlers MD, Huganir RL (1999) Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nat Neurosci 2:37–43.

    Article  PubMed  CAS  Google Scholar 

  • Lim S, Naisbitt S, Yoon J, Hwang JI, Suh PG, Sheng M, Kim E (1999) Characterization of the Shank family of synaptic proteins. Multiple genes, alternative splicing, and differential expression in brain and development. J Biol Chem 274:29510–29518.

    Article  PubMed  CAS  Google Scholar 

  • Lin B, Kramar EA, Bi X, Brucher FA, Gall CM, Lynch G (2005) Theta stimulation polymerizes actin in dendritic spines of hippocampus. J Neurosci 25:2062–2069.

    Article  PubMed  CAS  Google Scholar 

  • Lippman J, Dunaevsky A (2005) Dendritic spine morphogenesis and plasticity. J Neurobiol 64: 47–57.

    Article  PubMed  CAS  Google Scholar 

  • Llinas R, McGuinness TL, Leonard CS, Sugimori M, Greengard P (1985) Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Natl Acad Sci USA 82:3035–3039.

    Article  PubMed  CAS  Google Scholar 

  • Lonart G (2002) RIM1: an edge for presynaptic plasticity. Trends Neurosci 25:329–332.

    Article  PubMed  CAS  Google Scholar 

  • Luo L (2000) Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 1:173–180.

    Article  PubMed  CAS  Google Scholar 

  • Lüscher C, Nicoll RA, Malenka RC, Muller D (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci 3:545–550.

    Article  PubMed  Google Scholar 

  • Malenka RC (1994) Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78:535–538.

    Article  PubMed  CAS  Google Scholar 

  • Maletic-Savatic M, Malinow R, Svoboda K (1999) Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283:1923–1927.

    Article  PubMed  CAS  Google Scholar 

  • Malinow R, Mainen ZF, Hayashi Y (2000) LTP mechanisms: from silence to four-lane traffic. Curr Opin Neurobiol 10:352–357.

    Article  PubMed  CAS  Google Scholar 

  • Malinow R (2003) AMPA receptor trafficking and long-term potentiation. Philos Trans R Soc Lond B Biol Sci 358:707–714.

    Article  PubMed  CAS  Google Scholar 

  • Martin SJ, Grimwood PD, Morris RGM (2000) Synaptic plasticity and memory: An evaluation of the hypothesis. Annu Rev Neurosci 23:649–711.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:086–1092.

    Article  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766.

    Article  PubMed  CAS  Google Scholar 

  • Matus A (2000) Actin-based plasticity in dendritic spines. Science 290:754–758.

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263.

    Article  PubMed  CAS  Google Scholar 

  • Meng Y, Zhang Y, Tregoubov V, Janus C, Cruz L, Jackson M, Lu WY, MacDonald JF, Wang JY, Falls DL, Jia Z (2002) Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35:121–133.

    Article  PubMed  CAS  Google Scholar 

  • Merrifield CJ, Feldman ME, Wan L, Almers W (2002) Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 4:691–698.

    Article  PubMed  CAS  Google Scholar 

  • Michels G, Moss SJ (2007) GABAA receptors: properties and trafficking. Crit Rev Biochem Mol Biol 42:3–14.

    Article  PubMed  CAS  Google Scholar 

  • Miki H, Miura K, Takenawa T (1996) N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J 15:5326–5335.

    PubMed  Google Scholar 

  • Miki H, Suetsugu S, Takenawa T (1998) WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J 17:6932–6941.

    Article  PubMed  CAS  Google Scholar 

  • Morales M, Colicos MA, Goda Y (2000) Actin-dependent regulation of neurotransmitter release at central synapses. Neuron 27:539–550.

    Article  PubMed  CAS  Google Scholar 

  • Mullins RD (2000) How WASP-family proteins and the Arp2/3 complex convert intracellular signals into cytoskeletal structures. Curr Opin Cell Biol 12:91–96.

    Article  PubMed  CAS  Google Scholar 

  • Murthy VN, Stevens CF (1998) Synaptic vesicles retain their identity through the endocytic cycle. Nature 392:497–501.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama AY, Harms MB, Luo L (2000) Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci 20: 5329–5338.

    PubMed  CAS  Google Scholar 

  • Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, Weinberg RJ, Worley PF, Sheng M (1999) Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23:569–582.

    Article  PubMed  CAS  Google Scholar 

  • Nelson SB, Turrigiano GG (1998) Synaptic depression: a key player in the cortical balancing act. Nat Neurosci 1:539–541.

    Article  PubMed  CAS  Google Scholar 

  • Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353.

    Article  PubMed  CAS  Google Scholar 

  • Niethammer M, Kim E, Sheng M (1996) Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J Neurosci 16:2157–2163.

    PubMed  CAS  Google Scholar 

  • Nusser Z, Lujan R, Laube G, Roberts JDB, Molnar E, Somogyi P (1998) Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21:545–559.

    Article  PubMed  CAS  Google Scholar 

  • O‘Brien RJ, Kamboj S, Ehlers MD, Rosen KR, Fischbach GD, Huganir RL (1998) Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21:1067–1078.

    Article  PubMed  Google Scholar 

  • Okamoto K, Hayashi Y (2006) Visualization of F-actin and G-actin equilibrium using fluorescence resonance energy transfer (FRET) in cultured cells and neurons in slices. Nat Protoc 1:911–999.

    Article  PubMed  CAS  Google Scholar 

  • Orth JD, McNiven MA (2003) Dynamin at the actin-membrane interface. Curr Opin Cell Biol 15:31–39.

    Article  PubMed  CAS  Google Scholar 

  • Penzes P, Beeser A, Chernoff J, Schiller MR, Eipper BA, Mains RE, Huganir RL (2003) Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37:263–274.

    Article  PubMed  CAS  Google Scholar 

  • Penzes P, Johnson RC, Sattler R, Zhang X, Huganir RL, Kambampati V, Mains RE, Eipper BA (2001) The neuronal Rho-GEF Kalirin-7 interacts with PDZ domain-containing proteins and regulates dendritic morphogenesis. Neuron 29:229–242.

    Article  PubMed  CAS  Google Scholar 

  • Petrak LJ, Harris KM, Kirov SA (2005) Synaptogenesis on mature hippocampal dendrites occurs via filopodia and immature spines during blocked synaptic transmission. J Comp Neurol 484:183–190.

    Article  PubMed  Google Scholar 

  • Pfenninger K, Akert K, Moor H, Sandri C (1972) The fine structure of freeze-fractured presynaptic membranes. J Neurocytol 1:129–149.

    Article  PubMed  CAS  Google Scholar 

  • Pieribone VA, Shupliakov O, Brodin L, Hilfiker-Rothenfluh S, Czernik AJ, Greengard P (1995) Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375:493–497.

    Article  PubMed  CAS  Google Scholar 

  • Pilpel Y, Segal M (2005) Rapid WAVE dynamics in dendritic spines of cultured hippocampal neurons is mediated by actin polymerization. J Neurochem 95:1401–1410.

    Article  PubMed  CAS  Google Scholar 

  • Portera-Cailliau C, Pan DT, Yuste R (2003) Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J Neurosci 23:7129–7142.

    PubMed  CAS  Google Scholar 

  • Prekeris R, Terrian DM (1997) Brain myosin V is a synaptic vesicle-associated motor protein: evidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex. J Cell Biol 137:1589–1601.

    Article  PubMed  CAS  Google Scholar 

  • Prior P, Schmitt B, Grenningloh G, Pribilla I, Multhaup G, Beyreuther K, Maulet Y, Werner P, Langosch D, Kirsch J (1992) Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron 8:1161–1170.

    Article  PubMed  CAS  Google Scholar 

  • Puthenveedu MA, von Zastrow M (2006) Cargo regulates clathrin-coated pit dynamics. Cell 127:113–124.

    Article  PubMed  CAS  Google Scholar 

  • Qualmann B, Boeckers TM, Jeromin M, Gundelfinger ED, Kessels M (2004) Linkage of the actin cytoskeleton to the postsynaptic density via direct interactions of Abp1 with the ProSAP/Shank family. J Neurosci 24:2481–2495.

    Article  PubMed  CAS  Google Scholar 

  • Rang HP, Dale MM, Ritter JM, Gardner P (1995) Chemical transmission and drug action in the central nervous system. Pharmacology. Third Edition, Published by Churchill Livingstone, New York, NY, page 491–519.

    Google Scholar 

  • Richards DA, Mateos JM, Hugel S, de Paola V, Caroni P, Gahwiler BH, McKinney RA (2005) Glutamate induces the rapid formation of spine head protrusions in hippocampal slice cultures. Proc Natl Acad Sci USA 102:6166–6171.

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410.

    Article  PubMed  CAS  Google Scholar 

  • Ryan TA (1999) Inhibitors of myosin light chain kinase block synaptic vesicle pool mobilization during action potential firing. J Neurosci 19:1317–1323.

    PubMed  CAS  Google Scholar 

  • Rosahl TW, Spillane D, Missler M, Herz J, Selig DK, Wolff JR, Hammer RE, Malenka RC, Sudhof TC (1995) Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375:488–493.

    Article  PubMed  CAS  Google Scholar 

  • Sankaranarayanan S, Atluri PP, Ryan TA (2003) Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat Neurosci 6:127–135.

    Article  PubMed  CAS  Google Scholar 

  • Schubert V, Da Silva JS, Dotti CG (2006) Localized recruitment and activation of RhoA underlies dendritic spine morphology in a glutamate receptor-dependent manner. J Cell Biol 172: 453–467.

    Article  PubMed  CAS  Google Scholar 

  • Schubert V, Dotti CG (2007) Transmitting on actin: synaptic control of dendritic architecture. J Cell Sci 120:205–212.

    Article  PubMed  CAS  Google Scholar 

  • Schweizer FE, Betz J, Augustine GJ (1995) From vesicle docking to endocytosis: intermediate reactions of exocytosis. Neuron 14:689–696.

    Article  PubMed  CAS  Google Scholar 

  • Schweizer FE, Ryan TA (2006) The synaptic vesicle: cycle of exocytosis and endocytosis. Curr Opin Neurobiol 16:298–304.

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes.. Annu Rev Neurosci 24:1–29.

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Kim E (2000) The Shank family of scaffold proteins. J Cell Sci 113:1851–1856.

    PubMed  CAS  Google Scholar 

  • Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284:1811–1816.

    Article  PubMed  CAS  Google Scholar 

  • Shirao T, Sekino Y (2001) Clustering and anchoring mechanisms of molecular constituents of postsynaptic scaffolds in dendritic spines. Neurosci Res 40:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Shtrahman M, Yeung C, Nauen DW, Bi GQ, Wu XL (2005) Probing vesicle dynamics in single hippocampal synapses. Biophys J 89:3615–3627.

    Article  PubMed  CAS  Google Scholar 

  • Smythe E, Ayscough KR (2006) Actin regulation in endocytosis. J Cell Sci 119:4589–4598.

    Article  PubMed  CAS  Google Scholar 

  • Sokac AM, Bement WM (2006) Kiss-and-coat and compartment mixing: coupling exocytosis to signal generation and local actin assembly. Mol Biol Cell 17:1495–1502.

    Article  PubMed  CAS  Google Scholar 

  • Soderling SH, Guire ES, Kaech S, White J, Zhang F, Schutz K, Langeberg LK, Banker G, Raber J, Scott JD (2007) A WAVE-1 and WRP signaling complex regulates spine density, synaptic plasticity, and memory. J Neurosci 27:355–365.

    Article  PubMed  CAS  Google Scholar 

  • Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547.

    Article  PubMed  CAS  Google Scholar 

  • Suetsugu S, Miki H, Takenawa T (1999) Identification of two human WAVE/SCAR homologues as general actin regulatory molecules which associate with Arp2/3 complex. Biochem Biophys Res Commun 260:296–302.

    Article  PubMed  CAS  Google Scholar 

  • Symons M, Derry JM, Karlak B, Jiang S, Lemahieu V, McCormick F, Francke U, Abo A (1996) Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84:723–734.

    Article  PubMed  CAS  Google Scholar 

  • Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16:95–101.

    Article  PubMed  CAS  Google Scholar 

  • Takenawa T, Miki H (2001) WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J Cell Sci 114:1801–1809.

    PubMed  CAS  Google Scholar 

  • Takenawa T, Suetsugu S (2007) The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8:37–48.

    Article  PubMed  CAS  Google Scholar 

  • Tashiro A, Minden A, Yuste R (2000) Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb Cortex 10:927–938.

    Article  PubMed  CAS  Google Scholar 

  • Tolias KF, Bikoff JB, Kane CG, Tolias CS, Hu L, Greenberg ME (2007) The Rac1 guanine nucleotide exchange factor Tiam1 mediates EphB receptor-dependent dendritic spine development. Proc Natl Acad Sci USA 104:7265–7270.

    Article  PubMed  CAS  Google Scholar 

  • Tolias KF, Bikoff JB, Burette A, Paradis S, Harrar D, Tavazoie S, Weinberg RJ, Greenberg ME (2005) The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron 45:525–538.

    Article  PubMed  CAS  Google Scholar 

  • Tomita SM, Fukata RA, Nicoll RA, Bredt DS (2004) Dynamic interaction of stargazing-like TARPs with cycling AMPARs at synapses. Science 303:1508–1511.

    Article  PubMed  CAS  Google Scholar 

  • Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402:421–425.

    Article  PubMed  CAS  Google Scholar 

  • Torres R, Firestein BL, Dong H, Staudinger J, Olson EN, Huganir RL, Bredt DS, Gale NW, Yancopoulos GD (1998) PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron 21:1453–1463.

    Article  PubMed  CAS  Google Scholar 

  • Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420: 788–794.

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107.

    Article  PubMed  CAS  Google Scholar 

  • Valtschanoff JG, Weinberg RJ (2001) Laminar organization of the NMDA receptor complex within the postsynaptic density. J Neurosci 21:1211–1217.

    PubMed  CAS  Google Scholar 

  • Vazquez LE, Chen HJ, Sokolova I, Knuesel I, Kennedy MB (2004) SynGAP regulates spine formation. J Neurosci 24:8862–8872.

    Article  PubMed  CAS  Google Scholar 

  • Walker JH, Boustead CM, Witzemann V, Shaw G, Weber K, Osborn M (1985) Cytoskeletal proteins at the cholinergic synapse: distribution of desmin, actin, fodrin, neurofilaments, and tubulin in Torpedo electric organ. Eur J Cell Biol 38:123–133.

    PubMed  CAS  Google Scholar 

  • Wang XH, Zheng JQ, Poo MM (1996) Effect of cytochalasin treatment in short-term synaptic plasticity at developing neuromuscular junctions in frogs. J Physiol 491:187–195.

    PubMed  CAS  Google Scholar 

  • Westrum LE, Jones DH, Gray EG, Barron J (1980) Microtubules, dendritic spines and spine appratuses. Cell Tissue Res 208:171–181.

    Article  PubMed  CAS  Google Scholar 

  • Wiens KM, Lin H, Liao D (2005) Rac1 induces the clustering of AMPA receptors during spinogenesis. J Neurosci 25:10627–10635.

    Article  PubMed  CAS  Google Scholar 

  • Wyszynski M, Lin J, Rao A, Nigh E, Beggs AH, Craig AM, Sheng M (1997) Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 385:439–442.

    Article  PubMed  CAS  Google Scholar 

  • Xia J, Zhang X, Staudinger J, Huganir RL (1999) Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1. Neuron 22:179–187.

    Article  PubMed  CAS  Google Scholar 

  • Yeung C, Shtrahman M, Wu XL (2007) Stick-and-diffuse and caged diffusion: a comparison of two models of synaptic vesicle dynamics. Biophys J 92:2271–2280.

    Article  PubMed  CAS  Google Scholar 

  • Zito K, Knott G, Shepherd GM, Shenolikar S, Svoboda K (2004) Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton. Neuron 44:321–334.

    Article  PubMed  CAS  Google Scholar 

  • Zuo Y, Lin A, Chang P, Gan WB (2005) Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46:181–189.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dezhi Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liao, D. (2011). Actin at the Synapse: Contribution to Pre- and Postsynaptic Functions. In: Gallo, G., Lanier, L. (eds) Neurobiology of Actin. Advances in Neurobiology, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7368-9_10

Download citation

Publish with us

Policies and ethics