Human Adaptations for Mating: Frameworks for Understanding Patterns of Family Formation and Fertility

Chapter
Part of the National Symposium on Family Issues book series (NSFI)

Abstract

Reproductive and mating systems vary substantially across modern and traditional human societies. A variety of conceptual tools may be required to explain this variation. This chapter discusses an explanatory framework based on the notion of evoked culture. Evoked cultural differences emerge when behavioral expression of an adaptation is contingent on environmental conditions, such that the behavior of groups exposed to different conditions consequently differs. This chapter has a number of components. First, it offers a brief primer of adaptationist concepts and methodologies within evolutionary biology. Second, it discusses how these methodologies have been used to infer particular adaptations underlying human mating. Third, it examines how some adaptations may have been shaped by selection to be expressed contingently, giving rise to variation. Finally, limitations and potentially useful applications of the evoked culture concept (e.g., illustrated by effects of the contraceptive pill on women’s mate choice) are discussed.

Keywords

Cellulose Migration Hepatitis Estrogen Lactate 

References

  1. Alexander, R. D., & Noonan, K. M. (1979). Concealment of ovulation, parental care, and human social evolution. In N. A. Chagnon & W. G. Irons (Eds.), Evolutionary biology and human social behavior: An anthropological perspective (pp. 436–453). Scituate: North Duxbury Press.Google Scholar
  2. Allen, E. V., & Doisy, E. A. (1923). An ovarian hormone: Preliminary reports of its localization, extraction and partial purification and action in test animals. Journal of the American Medical Association, 81, 819–821.CrossRefGoogle Scholar
  3. Alvergne, A., & Lummaa, V. (2009). Does the contraceptive pill alter mate choice in humans? Trends in Ecology and Evolution, 25, 171–179.PubMedCrossRefGoogle Scholar
  4. Anderson, K. G., Kaplan, H., & Lancaster, J. (2007). Confidence of paternity, divorce, and investment in children by Albuquerque men. Evolution and Human Behavior, 28, 1–10.CrossRefGoogle Scholar
  5. Andrews, P. W., Gangestad, S. W., & Matthews, D. (2002). Adaptationism – How to carry out an exaptationist program. Behavioral and Brain Sciences, 25, 489–504.Google Scholar
  6. Barber, N. (2009). Countries with fewer males have more violent crimes: Marriage markets and mating aggression. Aggressive and Violent Behavior, 13, 237–250.CrossRefGoogle Scholar
  7. Beach, F. A. (1974). Human sexuality and evolution. In W. Montagna & W. A. Sadler (Eds.), Reproductive behavior. New York: Plenum. pp. 333–366.Google Scholar
  8. Berg, S. J., & Wynne-Edwards, K. E. (2001). Changes in testosterone, cortisol, and estradiol levels in men becoming fathers. Mayo Clinic Proceedings, 76, 582–592.PubMedGoogle Scholar
  9. Black, F. L., & Hedrick, P. W. (1997). Strong balancing selection at HLA loci: Evidence from segregation in South American families. Proceedings of the National Academy of Sciences USA, 94, 12452–12456.CrossRefGoogle Scholar
  10. Booth, A., & Dabbs, J. M. (1993). Testosterone and mens’ marriages. Social Forces, 72, 463–477.Google Scholar
  11. Brewis, A., & Meyer, M. (2005). Demographic evidence that human ovulation is undetectable (at least in pair bonds). Current Anthropology, 46, 465–471.CrossRefGoogle Scholar
  12. Bribiescas, R. G. (2001). Reproductive ecology and life history of the human male. Yearbook of Physical Anthropology, 44, 148–176.CrossRefGoogle Scholar
  13. Brown, G. R., Laland, K. N., & Borgerhoff Mulder, M. (2009). Bateman’s principles and human sex roles. Trends in Ecology and Evolution, 24, 297–304.PubMedCrossRefGoogle Scholar
  14. Burnham, J. C., Chapman, J. F., Gray, P. B., McIntyre, M. H., Lipson, S. F., & Ellison, P. T. (2003). Men in committed, romantic relationships have lower testosterone. Hormones and Behavior, 44, 119–122.PubMedCrossRefGoogle Scholar
  15. Buss, D. M. (1989). Sex differences in human mate preferences: Evolutionary hypotheses tested in 37 cultures. Behavioral and Brain Sciences, 12, 1–49.CrossRefGoogle Scholar
  16. DeBruine, L. M. (2004). Resemblance to self increases the appeal of child faces to both men and women. Evolution and Human Behavior, 25, 142–154.CrossRefGoogle Scholar
  17. Dufour, S. L., & Sauther, M. L. (2002). Comparative and evolutionary dimensions of the energetics of human pregnancy and lactation. American Journal of Human Biology, 14, 584–602.PubMedCrossRefGoogle Scholar
  18. Dunbar, R. I. M. (1987). Primate social systems. Ithaca, NY: Comstock.Google Scholar
  19. Ellison, P. T. (2001). On fertile ground: A natural history of reproduction. Cambridge: Harvard University Press.Google Scholar
  20. Ellison, P. T. (2003). Energetics and reproductive effort. American Journal of Human Biology, 15, 342–351.PubMedCrossRefGoogle Scholar
  21. Ellison, P. T., Bribiescas, R. G., Bentley, G. R., Campbell, B. C., Lipson, S. F., Panter-Brick, C., et al. (2002) Population variation in age-related decline in male salivary testosterone. Human Reproduction, 17, 3251–3253.PubMedCrossRefGoogle Scholar
  22. Finch, C. E., & Rose, M. R. (1995). Hormones and the physiological architecture of life history evolution. Quarterly Review of Biology, 70, 1–52.PubMedCrossRefGoogle Scholar
  23. Fisher, H. (2004). Why we love: The nature and chemistry of romantic love. New York: Henry Holt.Google Scholar
  24. Fisher, H., Aron, A., & Brown, L. L. (2005). Romantic love: An fMRI study of a neural mechanism for mate choice. Journal of Comparative Neurology, 493, 58–62.PubMedCrossRefGoogle Scholar
  25. Fleming, A. S., Corter, C., Stallings, J., & Steiner, M. (2002). Testosterone and prolactin are associated with emotional responses to infant cries in new fathers. Hormones and Behavior, 42, 399–413.PubMedCrossRefGoogle Scholar
  26. Frank, R. H. (1988). Passions within reason: The strategic role of the emotions. New York: Norton.Google Scholar
  27. Gangestad, S. W., Haselton, M. G., & Buss, D. M. (2006). Evolutionary foundations of cultural variation: Evoked culture and mate preferences. Psychological Inquiry, 17, 75–95.CrossRefGoogle Scholar
  28. Gangestad, S. W., & Thornhill, R. (2007). The evolution of social inference processes: The importance of signaling theory. In J. P. Forgas, M. G. Haselton, & W. von Hippel (Eds.), Evolutionary psychology and social cognition (pp. 33–48). New York: Psychology Press.Google Scholar
  29. Gangestad, S. W., & Thornhill, R. (2008). Human oestrus. Proceedings of the Royal Society of London B, 275, 991–1000.CrossRefGoogle Scholar
  30. Gangestad, S. W., Thornhill, R., & Garver, C. E. (2002). Changes in women’s sexual interests and their partners’ mate retention tactics across the menstrual cycle: Evidence for shifting conflicts of interest. Proceedings of the Royal Society of London B, 269, 975–982.CrossRefGoogle Scholar
  31. Gangestad, S. W., Thornhill, R., & Garver-Apgar, C. E. (2005). Women’s sexual interests across the ovulatory cycle depend on primary partner fluctuating asymmetry. Proceedings of the Royal Society of London B, 272, 2023–2027.CrossRefGoogle Scholar
  32. Garemszegi, L. Z., Eens, M., Hurtrez-Boussès, S., & Møller, A. P. (2005). Testosterone, testes size and mating success in birds: A comparative study. Hormones and Behavior, 47, 389–409.CrossRefGoogle Scholar
  33. Garver-Apgar, C. E., Gangestad, S. W., & Thornhill, R. (2008). Hormonal correlates of women’s mid–cycle preference for the scent of symmetry. Evolution and Human Behavior, 29, 223–232.CrossRefGoogle Scholar
  34. Garver-Apgar, C. E., Gangestad, S. W., Thornhill, R., Miller, R. D., & Olp, J. (2006). MHC alleles, sexually responsivity, and unfaithfulness in romantic couples. Psychological Science, 17, 830–835.PubMedCrossRefGoogle Scholar
  35. Gaulin, S. J. C., & Schlegel, A. (1980). Paternal confidence and paternal investment: A cross-cultural test of a sociobiological hypothesis. Ethology and Sociobiology, 1, 301–309.CrossRefGoogle Scholar
  36. Geise, A. R., & Hedrick, P. W. (2003). Genetic variation and resistance to a bacterial infection in endangered Gila topminnow. Animal Conservation, 6, 369–377.CrossRefGoogle Scholar
  37. Godfrey-Smith, P. (1993). Functions: Consensus without unity. Pacific Philosophical Quarterly, 74, 196–208.Google Scholar
  38. Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the panglossian paradigm: A critique of the adaptationist program. Proceedings of the Royal Society of London B, 205, 581–598.CrossRefGoogle Scholar
  39. Gould, S. J., & Vrba, E. S. (1982) Exaptation: A missing term in the science of form. Paleobiology, 8, 4–15.Google Scholar
  40. Gray, P. B. (2003). Marriage, parenting, and testosterone variation among Kenyan Swahili men. American Journal of Physical Anthropology, 122, 279–286.PubMedCrossRefGoogle Scholar
  41. Gray, P. B., Chapman, J. F., Burnham, T. C., McIntyre, M. H., Lipson, S. F., & Ellison, P. T. (2004). Human male pairbonding and testosterone. Human Nature, 15, 119–131.CrossRefGoogle Scholar
  42. Gray, P. B., Kahlenberg, S. M., Barrett, E. S., Lipson, S. F., & Ellison, P. T. (2002). Marriage and fatherhood are associated with lower testosterone in males. Evolution and Human Behavior, 23, 193–201.CrossRefGoogle Scholar
  43. Gray, P. B., Yang, C. F. J., & Pope, H. G. (2006). Fathers have lower salivary testosterone levels than unmarried men and married non-fathers in Beijing, China. Proceedings of the Royal Society of London B, 273, 333–339.CrossRefGoogle Scholar
  44. Haig, D. (1993). Genetic conflicts in human pregnancy. Quarterly Review of Biology, 68, 495–532.PubMedCrossRefGoogle Scholar
  45. Hart, C. W. M., Pilling, A. R., & Goodale, J. C. (1987). The Tiwi of north Australia (3rd ed.). New York: Holt, Rinehart, and Winston.Google Scholar
  46. Hartung, J. (1985). Matrilineal inheritance: New theory and analysis. Behavioral and Brain Sciences, 8, 661–670.CrossRefGoogle Scholar
  47. Haselton, M. G., & Gangestad, S. W. (2006). Conditional expression of women’s desires and male mate retention efforts across the ovulatory cycle. Hormones and Behavior, 49, 509–518.PubMedCrossRefGoogle Scholar
  48. Hassebrauck, M. (2003). The effect of fertility risk on relationship scrutiny. Evolution and Cognition, 9, 116–122.Google Scholar
  49. Hawkes, K. (1991). Showing off: Tests of an hypothesis about men’s foraging goals. Ethology and Sociobiology, 12, 29–54.CrossRefGoogle Scholar
  50. Hawkes, K. (2004). Mating, parenting, and the evolution of human pairbonds. In B. Chapais & C. M. Berman (Eds.), Kinship and behavior in primates (pp. 443–473). Oxford: Oxford University Press.Google Scholar
  51. Hawkes, K., O’Connell, J. F., & Blurton Jones, N. G. (1991). Hunting patterns among the Hadza: Big game, common goals, foraging goals and the evolution of the human diet. Philosophical Transactions of the Royal Society of London B, 334, 243–251.CrossRefGoogle Scholar
  52. Hawkes, K., O’Connell, J. F., & Blurton Jones, N. G. (2001). Hunting and nuclear families – Some lessons from the Hadza about men’s work. Current Anthropology, 42, 681–709.CrossRefGoogle Scholar
  53. Hedrick, P. W. (1998). Balancing selection and the MHC. Genetica, 104, 207–214.PubMedCrossRefGoogle Scholar
  54. Hedrick, P. W., & Black, F. L. (1997). Random mating and selection within families against homozygotes for HLA in South Amerindians. Hereditas, 127, 51–58.PubMedCrossRefGoogle Scholar
  55. Hill, K. R., & Hurtado, A. M. (1996). Ache life history: The ecology and demography of a forest people. New York: Aldine de Gruyter.Google Scholar
  56. Hrdy, S. B. (1981). The woman that never evolved. Cambridge: Harvard University Press.Google Scholar
  57. Hrdy, S. B. (2009). Mothers and others. Cambridge: Harvard University Press.Google Scholar
  58. Hua, C. (2001). A society without fathers or husbands: The Na of China. Cambridge: MIT Press.Google Scholar
  59. Jacob, S., McClintock, M. K., Zelano, B., & Ober, C. (2002). Paternally inherited HLA alleles are associated with male choice of male odor. Nature Genetics, 30, 175–179.PubMedCrossRefGoogle Scholar
  60. Jankowiak, W. R., & Fischer, E. F. (1992). A cross-cultural perspective on romantic love. Ethnology, 31, 148–155.CrossRefGoogle Scholar
  61. Kaplan, H., & Hill, K. (1985). Hunting ability and reproductive success among male Ache foragers: Preliminary tests. Current Anthropology, 26, 131–133.CrossRefGoogle Scholar
  62. Kaplan, H., Hill, K., Lancaster, J., & Hurtado, A. M. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology, 9, 156–185.CrossRefGoogle Scholar
  63. Kenrick, D. T., Sadalla, E. K., Groth, G., & Trost, M. R. (1990). Evolution, traits, and the stages of human courtship: Qualifying the parental investment model. Journal of Personality, 58, 97–116.CrossRefGoogle Scholar
  64. Kokko, H., & Jennions, M. D. (2008). Parental investment, sexual selection and sex ratios. Journal of Evolutionary Biology, 21, 919–948.Google Scholar
  65. Kokko, H., & Johnstone, R. A. (2002). Why is mutual mate choice not the norm? Operational sex ratios, sex roles and the evolution of sexually dimorphic and monomorphic signalling. Philosophical Transactions of the Royal Society of London B, 357, 319–330.CrossRefGoogle Scholar
  66. Lancaster, J. B., & Lancaster, C. S. (1983). Parental investment: The hominid adaptation. In D. Ortner (Ed.), Parental care in mammals (pp. 347–387). New York: Plenum.Google Scholar
  67. Lovejoy, C. O. (1981). The origins of man. Science, 211, 341–350.PubMedCrossRefGoogle Scholar
  68. Marlowe, F. (1999). Male care and mating effort among Hadza foragers. Behavioral Ecology and Sociobiology, 46, 57–64.CrossRefGoogle Scholar
  69. Marlowe, F. (2001). Male contribution to diet and female reproductive success among foragers. Current Anthropology, 42, 755–760.CrossRefGoogle Scholar
  70. Marlowe, F. W. (2003a). A critical period for provisioning by Hadza men: Implications for pair bonding. Evolution and Human Behavior, 24, 217–229.CrossRefGoogle Scholar
  71. Marlowe, F. W. (2003b). The mating system of foragers in the standard cross-cultural sample. Cross-Cultural Research, 37, 282–306.CrossRefGoogle Scholar
  72. Mazur, A., & Booth, A. (1998). Testosterone and dominance in men. Behavioral and Brain Sciences, 21, 353–397.PubMedCrossRefGoogle Scholar
  73. Mazur, A., & Michalek, J. (1998). Marriage, divorce, and male testosterone. Social Forces, 77, 315–330.Google Scholar
  74. McIntyre, M., Gangestad, S. W., Gray, P. B., Chapman, J. F., Burnham, T. C., O’Rourke, M. T., & Thornhill, R. (2006). Romantic involvement often reduces men’s testosterone levels-but not always: The moderating role of extrapair sexual interest. Journal of Personality and Social Psychology,91, 642–651.PubMedCrossRefGoogle Scholar
  75. Miller, G. F., Tybur, J., & Jordan, B. (2007). Ovulatory cycle effects on tip earnings by lap dancers: Economic evidence for human estrus? Evolution and Human Behavior, 28, 375–381.CrossRefGoogle Scholar
  76. Millikan, R. (1989). In defense of proper functions. Philosophy of Science, 56, 288–302.CrossRefGoogle Scholar
  77. Muller, M. N., Marlowe, F. W., Bugumba, R., & Ellison, P. T. (2009). Testosterone and paternal care in East African foragers and pastoralists. Proceedings of the Royal Society B, 276, 347–354.PubMedCrossRefGoogle Scholar
  78. Muller, M. N., & Wrangham, R. W. (2001). The reproductive ecology of male hominoids. In. P. T. Ellison (Ed.), Reproductive ecology and human evolution (pp. 397–427). New York: Aldine.Google Scholar
  79. Murdock, G. P., & White, D. R. (1969). Standard cross-cultural sample. Ethnology, 9, 329–369.CrossRefGoogle Scholar
  80. Nunes, S., Fite, J. E., & French, J. A. (2000). Variation in steroid hormones associated with infant care behaviour and experience in male marmosets (Callithrix kuhlii). Animal Behaviour, 60, 1–9.CrossRefGoogle Scholar
  81. Nunes, S., Fite, J. E., Patera, K. J., & French, J. A. (2001). Interactions among paternal behavior, steroid hormones, and parental experience in male marmosets (Callithrix kuhlii). Hormones and Behavior, 39, 70–82.PubMedCrossRefGoogle Scholar
  82. Pedersen, F. A. (1991). Secular trends in human sex ratios: Their influence on individual and family behavior. Human Nature, 2, 271–291.CrossRefGoogle Scholar
  83. Penn, D. J., & Potts, W. K. (1999). The evolution of mating preferences and major histocompatibility complex genes. American Naturalist, 153, 145–164.CrossRefGoogle Scholar
  84. Pillsworth, E. G., & Haselton, M. G. (2006). Male sexual attractiveness predicts differential ovulatory shifts in female extra-pair attraction and male mate retention. Evolution and Human Behavior, 27, 247–258.CrossRefGoogle Scholar
  85. Platek, S. M., Burch, R. L., Panyavin, I. S., Wasserman, B. H., & Gallup, G. G., Jr. (2002). Reaction to children’s faces – Resemblance affects males more than females. Evolution and Human Behavior, 23, 159–166.CrossRefGoogle Scholar
  86. Platek, S. M., Critton, S. R., Burch, R. L., Frederick, D. A., Myers, T. E., & Gallup, G. G., Jr. (2003). How much paternal resemblance is enough? Sex differences in hypothetical investment decisions, but not in the detection of resemblance. Evolution and Human Behavior, 24, 81–87.CrossRefGoogle Scholar
  87. Platek, S. M., Keenan, J. P., & Mohamed, F. B. (2005). Sex differences in the neural correlates of child facial resemblance: An event-related fMRI study. Neuroimage, 25, 1336–1344.PubMedCrossRefGoogle Scholar
  88. Platek, S. M., Raines, D. M., Gallup, G. G., Mohamed, F. B., Thomson, J. W., Myers, T. E., et al. (2004). Reactions to children’s faces: Males are more affected by resemblance than females are, and so are their brains. Evolution and Human Behavior, 25, 394–405.CrossRefGoogle Scholar
  89. Pollet, T. V., & Nettle, D. (2008). Driving a hard bargain: Sex ratio and male marriage success in a historical U.S. population. Biology Letters, 4, 31–33.PubMedCrossRefGoogle Scholar
  90. Pollet, T. V., & Nettle, D. (2009). Market forces affect patterns of polygyny in Uganda. Proceedings of the National Academy of Sciences USA, 106, 2114–2117.CrossRefGoogle Scholar
  91. Puts, D. A. (2005). Mating context and menstrual phase affect women’s preferences for male voice pitch. Evolution and Human Behavior, 26, 388–397.CrossRefGoogle Scholar
  92. Quinlan, R. J., & Quinlan, M. B. (2008). Human lactation, pair-bonds and alloparents: A cross-cultural analysis. Human Nature, 19, 87–102.CrossRefGoogle Scholar
  93. Quinlan, R. J., Quinlan, M. B., & Flinn, M. V. (2003). Parental investment and age of weaning in a Caribbean village. Evolution and Human Behavior, 24, 1–16.CrossRefGoogle Scholar
  94. Roney, J. R., & Simmons, Z. L. (2008). Women’s estradiol predicts preference for facial cues of men’s testosterone. Hormones and Behavior, 53, 14–19.PubMedCrossRefGoogle Scholar
  95. Salmon, W. C. (1984). Scientific explanation and the causal structure of the world. Princeton: Princeton University Press.Google Scholar
  96. Santos, P. S. C., Schinemann, J. A., Gabardo, J., & Bicalho, M. D. (2005). New evidence that the MHC influences odor perception in humans: A study with 58 southern Brazilian students. Hormones and Behavior, 47, 384–388.PubMedCrossRefGoogle Scholar
  97. Singh, D., & Bronstad, P. M. (2001). Female body odour is a potential cue to ovulation. Proceedings of the Royal Society of London B, 268, 797–801.CrossRefGoogle Scholar
  98. Schmitt, D. P. (2005). Sociosexuality from Argentina to Zimbabwe: A 48-nation study of sex, culture, and strategies of human mating. Behavioral and Brain Sciences, 28, 247–311.Google Scholar
  99. Sterelny, K., & Griffiths, P. E. (1999). Sex and death: An introduction to the philosophy of biology. Chicago: University of Chicago Press.Google Scholar
  100. Storey, A. E., Walsh, C. J., Quinton, R. L., & Wynne-Edwards, K. E. (2000). Hormonal correlates of paternal responsiveness in new and expectant fathers. Evolution and Human Behavior, 21, 79–95.PubMedCrossRefGoogle Scholar
  101. Stumpf, R. M., & Boesch, C. (2005). Does promiscuous mating preclude female choice? Female sexual strategies in chimpanzees (Pan troglodytes verus) of the Taï National Park, Côte d’Ivoire. Behavioral Ecology and Sociobiology, 57, 511–524.CrossRefGoogle Scholar
  102. Symons, D. (1979). The evolution of human sexuality. Oxford: Oxford University Press.Google Scholar
  103. Tal, I. (2009). Unpublished dissertation data. Department of Psychology, University of New Mexico.Google Scholar
  104. Thornhill, R. (1997). The concept of an evolved adaptation. In M. Daly (Ed.), Characterizing human psychological adaptations (pp. 4–13). London: Wiley.Google Scholar
  105. Thornhill, R., & Gangestad, S. W. (2008). The evolutionary biology of human female sexuality. New York: Oxford University Press.Google Scholar
  106. Thornhill, R., Gangestad, S. W., Miller, R., Scheyd, G., Knight, J., & Franklin, M. (2003). MHC, symmetry, and body scent attractiveness in men and women. Behavioral Ecology, 14, 668–678.CrossRefGoogle Scholar
  107. Thurz, M. R., Thomas, H. C., Greenwood, B. M., & Hill, A. V. S. (1997). Heterozygote advantage for HLA class-II type in hepatitis B virus infection. Nature Genetics, 17, 11–12.CrossRefGoogle Scholar
  108. Tooby, J., & Cosmides, L. (1992). Psychological foundations of culture. In J. Barkow, L. Cosmides, & J. Tooby (Eds.), The adapted mind (pp. 19–136). New York: Oxford University Press.Google Scholar
  109. Trivers, R. L. (1972). Parental investment and sexual selection. In B. Campbell (Ed.), Sexual selection and the descent of man, 1881–1971 (pp. 136–179). Chicago: Aldine.Google Scholar
  110. Van Anders, S. M., & Watson, N. V. (2006). Relationship status and testosterone in North American heterosexual and non-heterosexual men and women: Cross-sectional and longitudinal data. Psychoendocrinology, 31, 715–723.CrossRefGoogle Scholar
  111. Wedekind, C., & Füri, S. (1997). Body odor preference in men and women: Do they aim for specific MHC combinations or simply heterozygosity? Proceeding of the Royal Society of London B, 264, 1471–1479.CrossRefGoogle Scholar
  112. Wedekind, C., Seebeck, T., Bettens, F., & Paepke, A. J. (1995). MHC-dependent mate preferences in humans. Proceeding of the Royal Society of London, B, 260, 245–249.CrossRefGoogle Scholar
  113. Wegner, K. M., Reusch, T. B. H., & Kalbe, M. (2003). Multiple parasites are driving major histocompatibility complex polymorphism in the wild. Journal of Evolutionary Biology, 16, 224–232.PubMedCrossRefGoogle Scholar
  114. Welling, L. L. M., Jones, B. C., DeBruine, L. M., Conway, C. A., Law Smith, M. J., Little, A. C., et al. (2007). Raised salivary testosterone in women is associated with increased attraction to masculine faces. Hormones and Behavior, 52, 156–161.PubMedCrossRefGoogle Scholar
  115. Westermarck, E. (1929). Marriage. New York: Jonathan Cape and Harrison Smith.Google Scholar
  116. Williams, G. C. (1966). Adaptation and natural selection: A critique of some current evolutionary thought. Princeton: Princeton University Press.Google Scholar
  117. Williams, G. C. (1992). Natural selection: Domains, levels and challenges. Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations