Skip to main content

Optimising the Development of Antibodies as Treatment for Cancer

  • Chapter
  • First Online:
Principles of Anticancer Drug Development

Abstract

Antibodies are proteins secreted by vertebrates, which bind to specific molecular moieties [1]. Millions of different antibodies are made by organisms, and early in development most self-recognising antibodies are removed from the repertoire. The remaining antibodies, accordingly, recognise non-self molecules, and are used by the host to eliminate microorganisms, foreign objects, and malignant cells. Manufacturing these highly specific molecules and using them for cancer treatment represents a major breakthrough.

Nonetheless, the challenges required to bring this technology to the clinic are significant and costly. Drug discovery, manufacturing, and clinical development are all expensive and have high risk [2], and optimising these processes are crucial. This chapter will summarise the science behind this technology, the current use of antibodies in anti-cancer treatment, the methodology of antibody anti-cancer drug development, and the ways in which these components may be improved to facilitate the transition from the laboratory to the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delves, P.J. and Roitt, I.M. 2000. The immune system. First of two parts. N Engl J Med 343:37–49.

    Article  PubMed  CAS  Google Scholar 

  2. DiMasi, J.A. and Grabowski, H.G. 2007. Economics of new oncology drug development. J Clin Oncol 25:209–216.

    Article  PubMed  Google Scholar 

  3. Iannello, A. and Ahmad, A. 2005. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev 24:487–499.

    Article  PubMed  CAS  Google Scholar 

  4. Kamradt, T. and Mitchison, N.A. 2001. Tolerance and autoimmunity. N Engl J Med 344:655–664.

    Article  PubMed  CAS  Google Scholar 

  5. Foote, J. and Eisen, H.N. 1995. Kinetic and affinity limits on antibodies produced during immune responses. Proc Natl Acad Sci U S A 92:1254–1256.

    Article  PubMed  CAS  Google Scholar 

  6. Zafir-Lavie, I., Michaeli, Y., and Reiter, Y. 2007. Novel antibodies as anticancer agents. Oncogene 26:3714–3733.

    Article  PubMed  CAS  Google Scholar 

  7. Lobo, E.D., Hansen, R.J., and Balthasar, J.P. 2004. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 93:2645–2668.

    Article  PubMed  CAS  Google Scholar 

  8. Tabrizi, M.A., Tseng, C.M., and Roskos, L.K. 2006. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 11:81–88.

    Article  PubMed  CAS  Google Scholar 

  9. Weiner, L.M. 2007. Building better magic bullets – improving unconjugated monoclonal antibody therapy for cancer. Nat Rev Cancer 7:701–706.

    Article  PubMed  CAS  Google Scholar 

  10. Reichert, J.M. and Valge-Archer, V.E. 2007. Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 6:349–356.

    Article  PubMed  CAS  Google Scholar 

  11. Croce, C.M. 2008. Oncogenes and cancer. N Engl J Med 358:502–511.

    Article  PubMed  CAS  Google Scholar 

  12. Kim, K.J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H.S., and Ferrara, N. 1993. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844.

    Article  PubMed  CAS  Google Scholar 

  13. Lin, Y.S., Nguyen, C., Mendoza, J.L., Escandon, E., Fei, D., Meng, Y.G., and Modi, N.B. 1999. Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor. J Pharmacol Exp Ther 288:371–378.

    PubMed  CAS  Google Scholar 

  14. Ashkenazi, A. and Herbst, R.S. 2008. To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Investig 118:11.

    Article  CAS  Google Scholar 

  15. Walczak, H. and Krammer, P.H. 2000. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 256:58–66.

    Article  PubMed  CAS  Google Scholar 

  16. Haynes, N.M., van der Most, R.G., Lake, R.A., and Smyth, M.J. 2008. Immunogenic anti-cancer chemotherapy as an emerging concept. Curr Opin Immunol 20:545–557.

    Article  PubMed  CAS  Google Scholar 

  17. Beer, T.M., Slovin, S.F., Higano, C.S., Tejwani, S., Dorff, T.B., Stankevich, V., and Lowy, I. 2008. Phase I trial of ipilimumab (IPI) alone and in combination with radiotherapy (XRT) in patients with metastatic castration resistant prostate cancer (MCRPC). J Clin Oncol 26:251s.

    Article  Google Scholar 

  18. Hersh, E.M., Weber, J.S., Powderly, J.D., et al. 2008. Disease control and long-term survival in chemotherapy-naive patients with advanced melanoma treates with ipilimumab (MDX-010) with or without dacarbazine. J Clin Oncol 26:9022.

    Google Scholar 

  19. Weber, J.S., Targan, S., Scotland, R., et al. 2006. Phase II trial of extended dose anti-CTLA-4 antibody ipilimumab (formerly MDX-010) with a multi-peptide vaccine for resected stages IIIC and IV melanoma. J Clin Oncol 24:2510.

    Article  CAS  Google Scholar 

  20. Bagshawe, K.D. 2006. Antibody-directed enzyme prodrug therapy (ADEPT) for cancer. Expert Rev Anticancer Ther 6:1421–1431.

    Article  PubMed  CAS  Google Scholar 

  21. Ross, J.S., Gray, K., Gray, G.S., Worland, P.J., and Rolfe, M. 2003. Anticancer antibodies. Am J Clin Pathol 119:472–485.

    Article  PubMed  CAS  Google Scholar 

  22. Kohler, G. and Milstein, C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497.

    Article  PubMed  CAS  Google Scholar 

  23. Countouriotis, A., Moore, T.B., and Sakamoto, K.M. 2002. Cell surface antigen and molecular targeting in the treatment of hematologic malignancies. Stem Cells 20:215–229.

    Article  PubMed  CAS  Google Scholar 

  24. Lonberg, N. 2005. Human antibodies from transgenic animals. Nat Biotechnol 23:1117–1125.

    Article  PubMed  CAS  Google Scholar 

  25. Reichert, J.M., Rosensweig, C.J., Faden, L.B., and Dewitz, M.C. 2005. Monoclonal antibody successes in the clinic. Nat Biotechnol 23:1073–1078.

    Article  PubMed  CAS  Google Scholar 

  26. Ohno, S., Mori, N., and Matsunaga, T. 1985. Antigen-binding specificities of antibodies are primarily determined by seven residues of VH. Proc Natl Acad Sci U S A 82:2945–2949.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang, Q., Chen, G., Liu, X., and Qian, Q. 2007. Monoclonal antibodies as therapeutic agents in oncology and antibody gene therapy. Cell Res 17:89–99.

    Article  PubMed  CAS  Google Scholar 

  28. Stashenko, P., Nadler, L.M., Hardy, R., and Schlossman, S.F. 1980. Characterization of a human B lymphocyte-specific antigen. J Immunol 125:1678–1685.

    PubMed  CAS  Google Scholar 

  29. Reff, M.E., Carner, K., Chambers, K.S., Chinn, P.C., Leonard, J.E., Raab, R., Newman, R.A., Hanna, N., and Anderson, D.R. 1994. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83:435–445.

    PubMed  CAS  Google Scholar 

  30. Glennie, M.J., French, R.R., Cragg, M.S., and Taylor, R.P. 2007. Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol Immunol 44:3823–3837.

    Article  PubMed  CAS  Google Scholar 

  31. Administration, F.-F.D. 2008. Highlights of Prescribing Information Rituxan. FDA-Federal Drugs Administration.

    Google Scholar 

  32. Hicklin, D.J. and Ellis, L.M. 2005. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027.

    Article  PubMed  CAS  Google Scholar 

  33. Eskens, F.A. and Sleijfer, S. 2008. The use of bevacizumab in colorectal, lung, breast, renal and ovarian cancer: where does it fit? Eur J Cancer 44:2350–2356.

    Article  PubMed  CAS  Google Scholar 

  34. Ferrara, N., Hillan, K.J., Gerber, H.P., and Novotny, W. 2004. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400.

    Article  PubMed  CAS  Google Scholar 

  35. Administration, F.-F.D. 2008. FDA Approval for Bevacizumab.

    Google Scholar 

  36. McKeage, K. and Perry, C.M. 2002. Trastuzumab: a review of its use in the treatment of metastatic breast cancer overexpressing HER2. Drugs 62:209–243.

    Article  PubMed  CAS  Google Scholar 

  37. Hudis, C.A. 2007. Trastuzumab – mechanism of action and use in clinical practice. N Engl J Med 357:39–51.

    Article  PubMed  CAS  Google Scholar 

  38. Aird, K.M., Ding, X., Baras, A., Wei, J., Morse, M.A., Clay, T., Lyerly, H.K., and Devi, G.R. 2008. Trastuzumab signaling in ErbB2-overexpressing inflammatory breast cancer correlates with X-linked inhibitor of apoptosis protein expression. Mol Cancer Ther 7:38–47.

    Article  PubMed  CAS  Google Scholar 

  39. Arnould, L., Gelly, M., Penault-Llorca, F., Benoit, L., Bonnetain, F., Migeon, C., Cabaret, V., Fermeaux, V., Bertheau, P., Garnier, J., et al. 2006. Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br J Cancer 94:259–267.

    Article  PubMed  CAS  Google Scholar 

  40. Valabrega, G., Montemurro, F., and Aglietta, M. 2007. Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol 18:977–984.

    Article  PubMed  CAS  Google Scholar 

  41. Institute, N.-N.C. 2008. FDA Approval for Trastuzumab.

    Google Scholar 

  42. Dassonville, O., Bozec, A., Fischel, J.L., and Milano, G. 2007. EGFR targeting therapies: monoclonal antibodies versus tyrosine kinase inhibitors. Similarities and differences. Crit Rev Oncol Hematol 62:53–61.

    Article  PubMed  Google Scholar 

  43. Mendelsohn, J. 2001. The epidermal growth factor receptor as a target for cancer therapy. Endocr Relat Cancer 8:3–9.

    Article  PubMed  CAS  Google Scholar 

  44. Goldstein, N.I., Prewett, M., Zuklys, K., Rockwell, P., and Mendelsohn, J. 1995. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res 1:1311–1318.

    PubMed  CAS  Google Scholar 

  45. Kurai, J., Chikumi, H., Hashimoto, K., Yamaguchi, K., Yamasaki, A., Sako, T., Touge, H., Makino, H., Takata, M., Miyata, M., et al. 2007. Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clin Cancer Res 13:1552–1561.

    Article  PubMed  CAS  Google Scholar 

  46. Cunningham, D., Humblet, Y., Siena, S., Khayat, D., Bleiberg, H., Santoro, A., Bets, D., Mueser, M., Harstrick, A., Verslype, C., et al. 2004. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345.

    Article  PubMed  CAS  Google Scholar 

  47. Bonner, J.A., Harari, P.M., Giralt, J., Azarnia, N., Shin, D.M., Cohen, R.B., Jones, C.U., Sur, R., Raben, D., Jassem, J., et al. 2006. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354:567–578.

    Article  PubMed  CAS  Google Scholar 

  48. Saadeh, C.E. and Lee, H.S. 2007. Panitumumab: a fully human monoclonal antibody with activity in metastatic colorectal cancer. Ann Pharmacother 41:606–613.

    Article  PubMed  CAS  Google Scholar 

  49. Keating, M.J., Cazin, B., Coutre, S., Birhiray, R., Kovacsovics, T., Langer, W., Leber, B., Maughan, T., Rai, K., Tjonnfjord, G., et al. 2002. Campath-1H treatment of T-cell prolymphocytic leukemia in patients for whom at least one prior chemotherapy regimen has failed. J Clin Oncol 20:205–213.

    Article  PubMed  CAS  Google Scholar 

  50. Institute, N.-N.C. 2008. FDA Approval for Alemtuzumab.

    Google Scholar 

  51. Imai, K. and Takaoka, A. 2006. Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer 6:714–727.

    Article  PubMed  CAS  Google Scholar 

  52. Ghetie, V., Sally, W.E., and Vitetta, E.S. 2004. Pharmacokinetics of antibodies and immunotoxins in mice and humans. In Handbook of Anticancer Pharmacokinetics and Pharmacodynamics, Figg, W. and McLeod, H.L., editors. Totowa, NJ: Humana Press.

    Google Scholar 

  53. Roopenian, D.C. and Akilesh, S. 2007. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7:715–725.

    Article  PubMed  CAS  Google Scholar 

  54. Chapman, K., Pullen, N., Graham, M., and Ragan, I. 2007. Preclinical safety testing of monoclonal antibodies: the significance of species relevance. Nat Rev Drug Discov 6:120–126.

    Article  PubMed  CAS  Google Scholar 

  55. Dillman, R.O. 2003. Monoclonal antibody therapy. In Principles of Cancer Biotherapy, Oldham, R.K., editor. Dordrecht, The Netherlands, Kluwer Academic.

    Google Scholar 

  56. Patel, D.D. and Goldberg, R.M. 2006. Cetuximab-associated infusion reactions: pathology and management. Oncology (Williston Park) 20:1373–1382; discussion 1382, 1392–1374, 1397.

    Google Scholar 

  57. Stebbings, R., Findlay, L., Edwards, C., Eastwood, D., Bird, C., North, D., Mistry, Y., Dilger, P., Liefooghe, E., Cludts, I., et al. 2007. “Cytokine storm” in the phase I trial of monoclonal antibody TGN1412: better understanding the causes to improve preclinical testing of immunotherapeutics. J Immunol 179:3325–3331.

    PubMed  CAS  Google Scholar 

  58. Mirick, G.R., Bradt, B.M., Denardo, S.J., and Denardo, G.L. 2004. A review of human anti-globulin antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words. Q J Nucl Med Mol Imaging 48:251–257.

    PubMed  CAS  Google Scholar 

  59. Lynch, C.M. and Grewal, I.S. 2008. Preclinical safety evaluation of monoclonal antibodies. Handb Exp Pharmacol 181:19–44.

    Article  PubMed  CAS  Google Scholar 

  60. Tabrizi, M.A. and Roskos, L.K. 2007. Preclinical and clinical safety of monoclonal antibodies. Drug Discov Today 12:540–547.

    Article  PubMed  CAS  Google Scholar 

  61. Weinberg, W.C., Frazier-Jessen, M.R., Wu, W.J., Weir, A., Hartsough, M., Keegan, P., and Fuchs, C. 2005. Development and regulation of monoclonal antibody products: challenges and opportunities. Cancer Metastasis Rev 24:569–584.

    Article  PubMed  CAS  Google Scholar 

  62. Loisel, S., Ohresser, M., Pallardy, M., Dayde, D., Berthou, C., Cartron, G., and Watier, H. 2007. Relevance, advantages and limitations of animal models used in the development of monoclonal antibodies for cancer treatment. Crit Rev Oncol Hematol 62:34–42.

    Article  PubMed  Google Scholar 

  63. Expert Scientific Group. 2006. Final Report of Expert Scientific Group on Phase I Clinical Trials. Norwich: The Stationery Office.

    Google Scholar 

  64. Suntharalingam, G., Perry, M.R., Ward, S., Brett, S.J., Castello-Cortes, A., Brunner, M.D., and Panoskaltsis, N. 2006. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355:1018–1028.

    Article  PubMed  CAS  Google Scholar 

  65. Authority, M.a.H.p.R. 2006. Final report on TGN1412 clinical trial.

    Google Scholar 

  66. (CHMP), C.f.M.P.f.H.U. 2007. Guideline on Strategies to Identify and Mitigate Risks for First-in-Human Clinical Trials with Investigational Medicinal Products. Committe for Medicinal Products for Human Use (CHMP).

    Google Scholar 

  67. Agoram, B.M. 2008. Use of pharmacokinetic/pharmacodynamic modelling for starting dose selection in first-in-human trials of high-risk biologics. Br J Clin Pharmacol 67:8.

    Google Scholar 

  68. Carden, C.P., Sarker, D., Postel-Vinay, S., Kaye, S.B., and de Bono, J.S. 2008. Patient selection for phase I trials using predictive biomarkers. Drug Discov Today- In submission.

    Google Scholar 

  69. Arkenau, H.T., Olmos, D., Ang, J.E., De Bono, J.S., Judson, I., and Kaye, S.B. 2008. Clinical outcome and prognostic factors for patients treated within the context of a phase I study: the Royal Marsden Hospital experience. Br J Cancer 98:5.

    Article  CAS  Google Scholar 

  70. Olmos, D., Okuno, S., Schuetze, S.M., Paccagnella, M.L., Yin, D., Gualberto, A., Worden, F.P., Haluska, P., de Bono, J.S., and Scurr, M. 2008. Safety, pharmacokinetics and preliminary activity of the anti-IGF-IR antibody CP-751,871 in patients with sarcoma. J Clin Oncol 26S:10501.

    Google Scholar 

  71. Sarker, D. and Workman, P. 2007. Pharmacodynamic biomarkers for molecular cancer therapeutics. Adv Cancer Res 96:213–268.

    Article  PubMed  CAS  Google Scholar 

  72. Goulart, B.H., Clark, J.W., Pien, H.H., Roberts, T.G., Finkelstein, S.N., and Chabner, B.A. 2007. Trends in the use and role of biomarkers in phase I oncology trials. Clin Cancer Res 13:6719–6726.

    Article  PubMed  CAS  Google Scholar 

  73. Agulnik, M., Oza, A.M., Pond, G.R., and Siu, L.L. 2006. Impact and perceptions of mandatory tumor biopsies for correlative studies in clinical trials of novel anticancer agents. J Clin Oncol 24:4801–4807.

    Article  PubMed  Google Scholar 

  74. Dowlati, A., Haaga, J., Remick, S.C., Spiro, T.P., Gerson, S.L., Liu, L., Berger, S.J., Berger, N.A., and Willson, J.K. 2001. Sequential tumor biopsies in early phase clinical trials of anticancer agents for pharmacodynamic evaluation. Clin Cancer Res 7:2971–2976.

    PubMed  CAS  Google Scholar 

  75. Burzykowski, T., Buyse, M., Yothers, G., Sakamoto, J., and Sargent, D. 2008. Exploring and validating surrogate endpoints in colorectal cancer. Lifetime Data Anal 14:54–64.

    Article  PubMed  Google Scholar 

  76. Seitz, K. and Zhou, H. 2007. Pharmacokinetic drug-drug interaction potentials for therapeutic monoclonal antibodies: reality check. J Clin Pharmacol 47:1104–1118.

    Article  PubMed  CAS  Google Scholar 

  77. Hecht, J.R., Mitchell, E., Chidiac, T., Scroggin, C., Hagenstad, C., Spigel, D., Marshall, J., Cohn, A., Suzuki, S., and Grifin, T. 2008. Interim results from PACCE: Irinotecan/bevacizumab +/− panitumumab as first-line treatment for metastatic cancer. In ASCO 2008 Gastrointestinal Cancers Symposium.

    Google Scholar 

  78. Punt, C.J., Tol, J., Rodenburg, C.J., Cats, A., Creemers, G., Schrama, J.G., Erdkamp, F.L., Vos, A., Mol, L., and Antonini, N.F. 2008. Randomized phase III study of capecitabine, oxaliplatin and bevacizumab with or without cetuximab in advanced colorectal cancer (ACC), the CAIRO2 study of the Dutch Colorectal Cancer Group. J Clin Oncol 26:LBA4011.

    Article  Google Scholar 

  79. Scher, H.I., Halabi, S., Tannock, I., Morris, M., Sternberg, C.N., Carducci, M.A., Eisenberger, M.A., Higano, C., Bubley, G.J., Dreicer, R., et al. 2008. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol 26:1148–1159.

    Article  PubMed  Google Scholar 

  80. Thall, P.F. and Wathen, J.K. 2008. Bayesian designs to account for patient heterogeneity in phase II clinical trials. Curr Opin Oncol 20:407–411.

    Article  PubMed  Google Scholar 

  81. Tuma, R.S. 2008. Examining heterogeneity in phase II trial designs may improve success in phase III. J Natl Cancer Inst 100:164–166.

    Article  PubMed  Google Scholar 

  82. Zohar, S. and Chevret, S. 2007. Recent developments in adaptive designs for Phase I/II dose-finding studies. J Biopharm Stat 17:1071–1083.

    Article  PubMed  Google Scholar 

  83. Suman, V.J., Dueck, A., and Sargent, D.J. 2008. Clinical trials of novel and targeted therapies: endpoints, trial design, and analysis. Cancer Invest 26:439–444.

    Article  PubMed  CAS  Google Scholar 

  84. Shaked, Y., Emmenegger, U., Man, S., Cervi, D., Bertolini, F., Ben-David, Y., and Kerbel, R.S. 2005. Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood 106:3058–3061.

    Article  PubMed  CAS  Google Scholar 

  85. Baselga, J., Pfister, D., Cooper, M.R., Cohen, R., Burtness, B., Bos, M., D’Andrea, G., Seidman, A., Norton, L., Gunnett, K., et al. 2000. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol 18:904–914.

    PubMed  CAS  Google Scholar 

  86. Sanderson, K., Scotland, R., Lee, P., Liu, D., Groshen, S., Snively, J., Sian, S., Nichol, G., Davis, T., Keler, T., et al. 2005. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J Clin Oncol 23:741–750.

    Article  PubMed  CAS  Google Scholar 

  87. Subramanian, J. and Govindan, R. 2008. Molecular genetics of lung cancer in people who have never smoked. Lancet Oncol 9:676–682.

    Article  PubMed  CAS  Google Scholar 

  88. Van Cutsem, E., Lang, I., D’haens, G., Moiseyenko, V., Zaluski, J., Folprecht, G., Tejpar, S., Kisker, O., Stroh, C., and Rougier, P. 2008. KRAS status and efficacy in the first-line treatment of patients with metastatic colorectal cancer (mCRC) treated with FOLFIRI with or without cetuximab: The CRYSTAL experience. J Clin Oncol 26:2.

    Article  Google Scholar 

  89. Lievre, A., Bachet, J.B., Boige, V., Cayre, A., Le Corre, D., Buc, E., Ychou, M., Bouche, O., Landi, B., Louvet, C., et al. 2008. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 26:374–379.

    Article  PubMed  CAS  Google Scholar 

  90. de Bono, J.S., Tolcher, A.W., Forero, A., Vanhove, G.F., Takimoto, C., Bauer, R.J., Hammond, L.A., Patnaik, A., White, M.L., Shen, S., et al. 2004. ING-1, a monoclonal antibody targeting Ep-CAM in patients with advanced adenocarcinomas. Clin Cancer Res 10:7555–7565.

    Article  PubMed  Google Scholar 

  91. Smith-Jones, P.M., Solit, D.B., Akhurst, T., Afroze, F., Rosen, N., and Larson, S.M. 2004. Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 22:701–706.

    Article  PubMed  CAS  Google Scholar 

  92. Viani, G.A., Afonso, S.L., Stefano, E.J., De Fendi, L.I., and Soares, F.V. 2007. Adjuvant trastuzumab in the treatment of her-2-positive early breast cancer: a meta-analysis of published randomized trials. BMC Cancer 7:153.

    Article  PubMed  CAS  Google Scholar 

  93. Slamon, D.J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., Fleming, T., Eiermann, W., Wolter, J., Pegram, M., et al. 2001. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792.

    Article  PubMed  CAS  Google Scholar 

  94. Piccart-Gebhart, M.J., Procter, M., Leyland-Jones, B., Goldhirsch, A., Untch, M., Smith, I., Gianni, L., Baselga, J., Bell, R., Jackisch, C., et al. 2005. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672.

    Article  PubMed  CAS  Google Scholar 

  95. Lu, D., Zhang, H., Koo, H., Tonra, J., Balderes, P., Prewett, M., Corcoran, E., Mangalampalli, V., Bassi, R., Anselma, D., et al. 2005. A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J Biol Chem 280:19665–19672.

    Article  PubMed  CAS  Google Scholar 

  96. Henson, E.S., Hu, X., and Gibson, S.B. 2006. Herceptin sensitizes ErbB2-overexpressing cells to apoptosis by reducing antiapoptotic Mcl-1 expression. Clin Cancer Res 12:845–853.

    Article  PubMed  CAS  Google Scholar 

  97. Payne, G. 2003. Progress in immunoconjugate cancer therapeutics. Cancer Cell 3:207–212.

    Article  PubMed  CAS  Google Scholar 

  98. Schrama, D., Reisfeld, R.A., and Becker, J.C. 2006. Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159.

    Article  PubMed  CAS  Google Scholar 

  99. Milenic, D.E., Brady, E.D., and Brechbiel, M.W. 2004. Antibody-targeted radiation cancer therapy. Nat Rev Drug Discov 3:488–499.

    Article  PubMed  CAS  Google Scholar 

  100. Frankel, A.E., Kreitman, R.J., and Sausville, E.A. 2000. Targeted toxins. Clin Cancer Res 6:326–334.

    PubMed  CAS  Google Scholar 

  101. Ricart, A.D. and Tolcher, A.W. 2007. Technology insight: cytotoxic drug immunoconjugates for cancer therapy. Nat Clin Pract Oncol 4:245–255.

    Article  PubMed  CAS  Google Scholar 

  102. Chakrabarti, M.C., Le, N., Paik, C.H., De Graff, W.G., and Carrasquillo, J.A. 1996. Prevention of radiolysis of monoclonal antibody during labeling. J Nucl Med 37:1384–1388.

    PubMed  CAS  Google Scholar 

  103. Wu, A.M. and Senter, P.D. 2005. Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146.

    Article  PubMed  CAS  Google Scholar 

  104. Chari, R.V. 2008. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41:98–107.

    Article  PubMed  CAS  Google Scholar 

  105. Miller, M.L., Roller, E.E., Wu, X., Leece, B.A., Goldmacher, V.S., Chari, R.V., and Ojima, I. 2004. Synthesis of potent taxoids for tumor-specific delivery using monoclonal antibodies. Bioorg Med Chem Lett 14:4079–4082.

    Article  PubMed  CAS  Google Scholar 

  106. Sievers, E.L., Appelbaum, F.R., Spielberger, R.T., Forman, S.J., Flowers, D., Smith, F.O., Shannon-Dorcy, K., Berger, M.S., and Bernstein, I.D. 1999. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 93:3678–3684.

    PubMed  CAS  Google Scholar 

  107. Larson, R.A., Sievers, E.L., Stadtmauer, E.A., Lowenberg, B., Estey, E.H., Dombret, H., Theobald, M., Voliotis, D., Bennett, J.M., Richie, M., et al. 2005. Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer 104:1442–1452.

    Article  PubMed  CAS  Google Scholar 

  108. Hamblett, K.J., Senter, P.D., Chace, D.F., Sun, M.M., Lenox, J., Cerveny, C.G., Kissler, K.M., Bernhardt, S.X., Kopcha, A.K., Zabinski, R.F., et al. 2004. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10:7063–7070.

    Article  PubMed  CAS  Google Scholar 

  109. McCann, J., Fossella, F.V., Villalona-Calero, A., Tolcher, A.W., Fidias, P., Raju, R., Zildjian, S., Guild, R., and Fram, R. 2007. Phase II trial of huN901-DM1 in patients with relapsed small cell lung cancer and CD56+ small cell carcinoma. J Clin Oncol 25:18084.

    Google Scholar 

  110. Tassone, P., Gozzini, A., Goldmacher, V., Shammas, M.A., Whiteman, K.R., Carrasco, D.R., Li, C., Allam, C.K., Venuta, S., Anderson, K.C., et al. 2004. In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2′-deacetyl-N2′-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells. Cancer Res 64:4629–4636.

    Article  PubMed  CAS  Google Scholar 

  111. Holden, S.N., Beeram, M., Krop, I.E., Burris, H.A., Birkner, M., Girish, S., Tibbitts, J., Lutzker, S.G., and Modi, S. 2008. A phase I study of weekly dosing of trastuzumab-DM1 in patients with advanced HER2+ breast cancer. J Clin Oncol 26:1029.

    Google Scholar 

  112. Beeram, M., Burris, H.A., Modi, S., Birkner, M., Girish, S., Tibbitts, J., Holden, S.N., Lutzker, S.G., and Krop, I.E. 2008. A phase I study of trastuzumab-DM1, a first-in-class HER2 antibody-drug conjugate, in patients with advanced HER2+ breast cancer. J Clin Oncol 26:1028.

    Google Scholar 

  113. Ross, H.J., Hart, L.L., Swanson, P.M., Rarick, M.U., Figlin, R.A., Jacobs, A.D., McCune, D.E., Rosenberg, A.H., Baron, A.D., Grove, L.E., et al. 2006. A randomized, multicenter study to determine the safety and efficacy of the immunoconjugate SGN-15 plus docetaxel for the treatment of non-small cell lung carcinoma. Lung Cancer 54:69–77.

    Article  PubMed  Google Scholar 

  114. Knox, S.J., Goris, M.L., Trisler, K., Negrin, R., Davis, T., Liles, T.M., Grillo-Lopez, A., Chinn, P., Varns, C., Ning, S.C., et al. 1996. Yttrium-90-labeled anti-CD20 monoclonal antibody therapy of recurrent B-cell lymphoma. Clin Cancer Res 2:457–470.

    PubMed  CAS  Google Scholar 

  115. Goldenberg, D.M. 2002. Targeted therapy of cancer with radiolabeled antibodies. J Nucl Med 43:693–713.

    PubMed  CAS  Google Scholar 

  116. Sharkey, R.M. 2005. The direct route may not be the best way to home. J Nucl Med 46:391–394.

    PubMed  Google Scholar 

  117. Kreitman, R.J. 2001. Toxin-labeled monoclonal antibodies. Curr Pharm Biotechnol 2:313–325.

    Article  PubMed  CAS  Google Scholar 

  118. Kreitman, R.J., Wilson, W.H., Stetler-Stevenson, M., Noel, P., FitzGerald, D.J., and Pastan, I. 2007. Phase II trial of CAT-3888 (BL22) in chemo-resistant hairy cell leukemia. J Clin Oncol 25:7095.

    Google Scholar 

  119. Posey, J.A., Khazaeli, M.B., Bookman, M.A., Nowrouzi, A., Grizzle, W.E., Thornton, J., Carey, D.E., Lorenz, J.M., Sing, A.P., Siegall, C.B., et al. 2002. A phase I trial of the single-chain immunotoxin SGN-10 (BR96 sFv-PE40) in patients with advanced solid tumors. Clin Cancer Res 8:3092–3099.

    PubMed  CAS  Google Scholar 

  120. Turturro, F. 2007. Denileukin diftitox: a biotherapeutic paradigm shift in the treatment of lymphoid-derived disorders. Expert Rev Anticancer Ther 7:11–17.

    Article  PubMed  CAS  Google Scholar 

  121. Holliger, P. and Hudson, P.J. 2005. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136.

    Article  PubMed  CAS  Google Scholar 

  122. Chowdhury, P.S. and Wu, H. 2005. Tailor-made antibody therapeutics. Methods 36:11–24.

    Article  PubMed  CAS  Google Scholar 

  123. Belau, A., Pfisterer, J., Wimberger, P., Kurzeder, C., Du Bois, A., Sehouli, J., Loibl, S., Burchardi, N., Vergote, I., and Wagner, U. 2007. Randomized, multicenter, two dose level, open-label, phase IIa study with the intraperitoneally infused trifunctional bispecific antibody catumaxomab (anti-EpCAM x anti-CD3) to select the better dose level in platinum refractory epithelial ovarian cancer patients. J Clin Oncol 25:5556.

    Article  Google Scholar 

  124. Boldicke, T. 2007. Blocking translocation of cell surface molecules from the ER to the cell surface by intracellular antibodies targeted to the ER. J Cell Mol Med 11:54–70.

    Article  PubMed  CAS  Google Scholar 

  125. Lo, A.S., Zhu, Q., and Marasco, W.A. 2008. Intracellular antibodies (intrabodies) and their therapeutic potential. Handb Exp Pharmacol 181:343–373.

    Article  PubMed  CAS  Google Scholar 

  126. Williams, B.R. and Zhu, Z. 2006. Intrabody-based approaches to cancer therapy: status and prospects. Curr Med Chem 13:1473–1480.

    Article  PubMed  CAS  Google Scholar 

  127. Taylor, R.P. and Lindorfer, M.A. 2008. Immunotherapeutic mechanisms of anti-CD20 monoclonal antibodies. Curr Opin Immunol 20:444–449.

    Article  PubMed  CAS  Google Scholar 

  128. Cartron, G., Dacheux, L., Salles, G., Solal-Celigny, P., Bardos, P., Colombat, P., and Watier, H. 2002. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99:754–758.

    Article  PubMed  CAS  Google Scholar 

  129. Weng, W.K. and Levy, R. 2003. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21:3940–3947.

    Article  PubMed  CAS  Google Scholar 

  130. Hatjiharissi, E., Xu, L., Santos, D.D., Hunter, Z.R., Ciccarelli, B.T., Verselis, S., Modica, M., Cao, Y., Manning, R.J., Leleu, X., et al. 2007. Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the Fc{gamma}RIIIa-158 V/V and V/F polymorphism. Blood 110:2561–2564.

    Article  PubMed  CAS  Google Scholar 

  131. Zhang, W., Gordon, M., Schultheis, A.M., Yang, D.Y., Nagashima, F., Azuma, M., Chang, H.M., Borucka, E., Lurje, G., Sherrod, A.E., et al. 2007. FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol 25:3712–3718.

    Article  PubMed  CAS  Google Scholar 

  132. Bibeau, F., Lopez-Crapez, E., Di Fiore, F., Thezanas, S., Ychou, M., Blanchard, F., Lamy, A., Penault-Llorca, F., Freborg, T., Michel, P., et al. 2009. Impact of Fc(gamma)RIIa-Fc(gamma)RIIIa polymorphosms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J Clin Oncol 27:8.

    Article  CAS  Google Scholar 

  133. Siberil, S., Dutertre, C.A., Fridman, W.H., and Teillaud, J.L. 2007. FcgammaR: the key to optimize therapeutic antibodies? Crit Rev Oncol Hematol 62:26–33.

    Article  PubMed  Google Scholar 

  134. Bowles, J.A., Wang, S.Y., Link, B.K., Allan, B., Beuerlein, G., Campbell, M.A., Marquis, D., Ondek, B., Wooldridge, J.E., Smith, B.J., et al. 2006. Anti-CD20 monoclonal antibody with enhanced affinity for CD16 activates NK cells at lower concentrations and more effectively than rituximab. Blood 108:2648–2654.

    Article  PubMed  CAS  Google Scholar 

  135. Masuda, K., Kubota, T., Kaneko, E., Iida, S., Wakitani, M., Kobayashi-Natsume, Y., Kubota, A., Shitara, K., and Nakamura, K. 2007. Enhanced binding affinity for FcgammaRIIIa of fucose-negative antibody is sufficient to induce maximal antibody-dependent cellular cytotoxicity. Mol Immunol 44:3122–3131.

    Article  PubMed  CAS  Google Scholar 

  136. de Romeuf, C., Dutertre, C.A., Le Garff-Tavernier, M., Fournier, N., Gaucher, C., Glacet, A., Jorieux, S., Bihoreau, N., Behrens, C.K., Beliard, R., et al. 2008. Chronic lymphocytic leukaemia cells are efficiently killed by an anti-CD20 monoclonal antibody selected for improved engagement of FcgammaRIIIA/CD16. Br J Haematol 140:635–643.

    Article  PubMed  CAS  Google Scholar 

  137. Radaev, S. and Sun, P.D. 2001. Recognition of IgG by Fcgamma receptor. The role of Fc glycosylation and the binding of peptide inhibitors. J Biol Chem 276:16478–16483.

    Article  PubMed  CAS  Google Scholar 

  138. Mori, K., Kuni-Kamochi, R., Yamane-Ohnuki, N., Wakitani, M., Yamano, K., Imai, H., Kanda, Y., Niwa, R., Iida, S., Uchida, K., et al. 2004. Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Biotechnol Bioeng 88:901–908.

    Article  PubMed  CAS  Google Scholar 

  139. Yamane-Ohnuki, N., Kinoshita, S., Inoue-Urakubo, M., Kusunoki, M., Iida, S., Nakano, R., Wakitani, M., Niwa, R., Sakurada, M., Uchida, K., et al. 2004. Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87:614–622.

    Article  PubMed  CAS  Google Scholar 

  140. Niwa, R., Sakurada, M., Kobayashi, Y., Uehara, A., Matsushima, K., Ueda, R., Nakamura, K., and Shitara, K. 2005. Enhanced natural killer cell binding and activation by low-fucose IgG1 antibody results in potent antibody-dependent cellular cytotoxicity induction at lower antigen density. Clin Cancer Res 11:2327–2336.

    Article  PubMed  CAS  Google Scholar 

  141. Teeling, J.L., Mackus, W.J., Wiegman, L.J., van den Brakel, J.H., Beers, S.A., French, R.R., van Meerten, T., Ebeling, S., Vink, T., Slootstra, J.W., et al. 2006. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol 177:362–371.

    PubMed  CAS  Google Scholar 

  142. Coiffier, B., Lepretre, S., Pedersen, L.M., Gadeberg, O., Fredriksen, H., van Oers, M.H., Wooldridge, J., Kloczko, J., Holowiecki, J., Hellmann, A., et al. 2008. Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: a phase 1–2 study. Blood 111:1094–1100.

    Article  PubMed  CAS  Google Scholar 

  143. Wang, S.Y., Racila, E., Taylor, R.P., and Weiner, G.J. 2008. NK-cell activation and antibody-dependent cellular cytotoxicity induced by rituximab-coated target cells is inhibited by the C3b component of complement. Blood 111:1456–1463.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann S. de Bono .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Carden, C.P., Arkenau, HT., de Bono, J.S. (2011). Optimising the Development of Antibodies as Treatment for Cancer. In: Garrett-Mayer, E. (eds) Principles of Anticancer Drug Development. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7358-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7358-0_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7357-3

  • Online ISBN: 978-1-4419-7358-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics