Skip to main content

Cancer Vaccines

  • Chapter
  • First Online:
Principles of Anticancer Drug Development

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1655 Accesses

Abstract

Cancer vaccines offer the unique opportunity to provide specific and direct antitumor recognition and killing by recruiting both T- and B-cell arms of the immune system while avoiding nonspecific toxicities. Because of this exquisite sensitivity and specificity, cancer vaccines in theory could also be safely integrated with surgery, radiation, and chemotherapy. Thus, the major advantage of immune-based therapies lies in their ability to specifically target the transformed tumor cell relative to the normal cell of origin. While a number of tumor-specific antigens have been reported most notably in melanoma and renal cell cancer [1–3], the clinical translation into the development of effective immunotherapy has been to date limited [4–7]. These observations have revealed that the immunologic interaction between tumor and host is complex and involves a delicate balance of tumor antigen recognition vs. tumor escape through immune regulatory pathways [8, 9]. As we begin to understand more about these mechanisms of immune modulation, new opportunities for immunotherapy have emerged. A number of novel immunotherapeutic approaches have been developed. They range from antigen-targeted immunotoxins to vaccines that enhance tumor-specific antibody and cellular responses. A few pancreatic cancer-associated antigens have now been identified as candidate targets of both antibody and cellular responses, particularly T-cell responses. This section will review the important features of an effective antitumor immune response, discuss the results of some of the more promising strategies that are currently under clinical development, and foreshadow what can be expected in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vieweg J, Jackson A. Antigenic targets for renal cell carcinoma immunotherapy. Expert Opin Biol Ther 2004;4(11):1791–1801.

    Article  PubMed  CAS  Google Scholar 

  2. Mulders P, Bleumer I, Oosterwijk E. Tumor antigens and markers in renal cell carcinoma. Urol Clin North Am 2003;30:455–465.

    Article  PubMed  Google Scholar 

  3. Wang RF, Rosenberg SA. Human tumor antigens for cancer vaccine development. Immunol Rev 1999;170:85–100.

    Article  PubMed  CAS  Google Scholar 

  4. Krejci JG, Markiewicz MA, Kwon ED. Immunotherapy for urological malignancies. J Urol 2004;171:870–876.

    Article  PubMed  CAS  Google Scholar 

  5. Michael A, Pandha HS. Renal cell carcinoma: tumour markers, T cell epitopes and potential for new therapies. Lancet Oncol 2003;4:215–223.

    Article  PubMed  CAS  Google Scholar 

  6. Sondak VK, Sabel MS, Mule JJ. Allogeneic and autologous melanoma vaccines: where have we been and where are we going? Clin Cancer Res 2006;12:2337–2341.

    Article  Google Scholar 

  7. Boon T, Coulie PG, Van den Eynde BJ, et al. Human T cell responses against melanoma. Annu Rev Immunol 2006;24:175–208.

    Article  PubMed  CAS  Google Scholar 

  8. Gajewski TF, Meng Y, Harlin H. Immune suppression in the tumor microenvironment. J Immunother 2006;29:233–240.

    Article  PubMed  CAS  Google Scholar 

  9. Laheru DA, Jaffee EM. Immunotherapy for pancreatic cancer – science driving clinical progress. Nat Rev 2005;5(6):459–467.

    CAS  Google Scholar 

  10. Greten TF, Jaffee EM. Cancer vaccines. J Clin Oncol 1999;17:1047–1060.

    PubMed  CAS  Google Scholar 

  11. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000;74:181–273.

    Article  PubMed  CAS  Google Scholar 

  12. Laheru D, Biedrzycki B, Jaffee EM. Immunologic approaches to the management of pancreatic cancer. Cancer J 2001;7(4):324–337.

    PubMed  CAS  Google Scholar 

  13. Wolf AM, Wolf D, Steurer M, et al. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res (Advances in Brief) 2003;9:606–612.

    Google Scholar 

  14. von Bernstorff W, Voss M, Freichel S, et al. Systemic and local immunosuppression in pancreatic cancer patients. Clin Cancer Res 2001;7(Suppl):925s–932s.

    Google Scholar 

  15. Salama P, Phillips M, Grieu F, et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 2009;27:186–192.

    Article  PubMed  Google Scholar 

  16. Hinz S, Pagerols-Raluy L, Oberg HH, et al. Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer. Cancer Res 2007;67:8344–8350.

    Article  PubMed  CAS  Google Scholar 

  17. Hiraoka N, Onozato K, Kosuge T, et al. Prevalence of FOXP3+ regulatory T cells increase during the progression of pancreatic ductal adenocarcinoma and its pre-malignant lesions. Clin Cancer Res 2006;12:5423–5434.

    Article  PubMed  CAS  Google Scholar 

  18. Shen LS, Wang J, Shen DF, et al. CD4(+)CD25(+)CD127 (low/−) regulatory T cells express Foxp3 and suppress T cell proliferation and contribute to gastric cancers progression. Clin Immunol 2009;131:109–118.

    Article  PubMed  CAS  Google Scholar 

  19. Kabbinavar FF, Schulz J, McCleod M, et al. Addition of bevacizumab to bolus fluorouracil and leukovorin in first line metastatic colorectal cancer: results of a randomized phase II trial. J Clin Oncol 2005;23:3697–3705.

    Article  PubMed  CAS  Google Scholar 

  20. Huwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil and leukovorin for metastatic colorectal cancer. N Engl J Med 2004;350:2335–2342.

    Article  Google Scholar 

  21. Giantonio BJ, Catalano PJ, Meropol NJ, et al. Bevacizumab in combination with oxaliplatin, fluorouracil and leukovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 2007;25:1539–1544.

    Article  PubMed  CAS  Google Scholar 

  22. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan refractory metastatic colorectal cancer. N Engl J Med 2004;351:337–345.

    Article  PubMed  CAS  Google Scholar 

  23. Van Cutsem E, Peeters M, Siena S, et al. Open label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 2007;25:1658–1664.

    Article  PubMed  Google Scholar 

  24. Yokoi K, Thaker PH, Yzici S, et al. Dual inhibition of epidermal growth factor receptor and vascular endothelial growth factor receptor phosphorylation by AEE788 reduces growth and metastasis of human colon carcinoma in an orthotopic nude mouse model. Cancer Res 2005;65:3716–3725.

    Article  PubMed  CAS  Google Scholar 

  25. Bruns CJ, Solorzano CC, Harbison MT, et al. Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res 2000;60:2926–2935.

    PubMed  CAS  Google Scholar 

  26. Saltz LB, Lenz HJ, Kindler H, et al. Randomized phase II trial of cetuximab, bevacizumab, and irinotecan compared with fluorouracil alone in irinotecan refractory colorectal cancer: the BOND-2 study. J Clin Oncol 2007;25:4557–4561.

    Article  PubMed  CAS  Google Scholar 

  27. Bokemeyer C, Bondarenko I, Makhson A, et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 2009;27:663–671.

    Article  PubMed  CAS  Google Scholar 

  28. Van Cutsem E, Lanf I, D’Haens G, et al. KRAS status and efficacy in the first line treatment of patients with metastatic colorectal cancer treated with FOLFIRI with or without cetuximab: the crystal experience. J Clin Oncol 2008;26:5s (suppl: abstract 2).

    Article  Google Scholar 

  29. Hecht JR, Mitchell E, Chidiac T, et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 2009;27:672–680.

    Article  PubMed  CAS  Google Scholar 

  30. Amado RG, Wolf M, Peeters M, et al. Wild type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 2008;26:1626–1634.

    Article  PubMed  CAS  Google Scholar 

  31. Allegra CJ, Jessup JM, Somerfield MR, et al. American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 2009;27(12):2091–2096.

    Article  PubMed  Google Scholar 

  32. Hartung G, Hofheinz RD, Dencausse Y, et al. Adjuvant therapy with edrecolomab versus observation in stage II colon cancer: a multi-center randomized phase III study. Onkologie 2005;28:347–350.

    Article  PubMed  CAS  Google Scholar 

  33. Gjertsen MK, Buanes T, Rosseland AR, et al. Intradermal ras peptide vaccination with granulocyte–macrophage colony stimulating factor as adjuvant: clinical and immunologic responses in patients with pancreatic adenocarcinoma. Int J Cancer 2001;92:441–450.

    Article  PubMed  CAS  Google Scholar 

  34. Maki RG, Livingston PO, Lewis JJ, et al. A phase I pilot study of autologous heat shock protein vaccine HSPPC-96 in patients with resected pancreatic adenocarcinoma. Dig Dis Sci 2007;52:1964–1972.

    Article  PubMed  CAS  Google Scholar 

  35. Tolcher AW, Ochoa L, Hammond LA, et al. Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a phase I pharmacokinetic and biologic correlative study. J Clin Oncol 2003;21(2):211–222.

    Article  PubMed  CAS  Google Scholar 

  36. Kondo H, Hazama S, Kawaoka T, et al. Adoptive immunotherapy for pancreatic cancer using MUC-1 peptide pulsed dendritic cells and activated T lymphocytes. Anticancer Res 2008;28:379–387.

    PubMed  CAS  Google Scholar 

  37. Marshall JL, Gulley JL, Aren PM, et al. Phase I study of sequential vaccinations with Fowlpx-CEA (6D)-TRICOM alone and sequentially with vaccinia – CEA (6D)-TRICOM with or without granulocyte–macrophage colony stimulating factor in patients with carcinoenbryonic antigen-expressing carcinomas. J Clin Oncol 2005;23:720–731.

    Article  PubMed  CAS  Google Scholar 

  38. Imai K, Hirata S, Irie A, et al. Identification of a novel tumor associated antigen, cadherin 3/P – cadherin, as a possible target for immunotherapy of pancreatic, gastric and colorectal cancers. Clin Cancer Res 2008;14:6847–6895.

    Article  Google Scholar 

  39. Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte–macrophage colony stimulating factor stimulates potent specific and long lasting immunity. Proc Natl Acad Sci U S A 1993;90:3539–3543.

    Article  PubMed  CAS  Google Scholar 

  40. Jaffee EM, Hruban R, Biedrzycki B, et al. A novel allogeneic GM-CSF secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol 2001;19(1):145–156.

    PubMed  CAS  Google Scholar 

  41. Argani P, Iacobuzio-Donahue C, Ryu B, et al. Mesothelin is over-expressed in the vast majority of ductal adenocarcinoma of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression. Clin Cancer Res 2001;7(12):3862–3868.

    PubMed  CAS  Google Scholar 

  42. Argani, P, Rosty, C, Reiter, RE, et al. Discovery of new markers of cancer through serial analysis of gene expression (SAGE): prostate stem cell antigen (PSCA) is over-expressed in pancreatic adenocarcinoma. Cancer Res 2001;61:4320–4324.

    PubMed  CAS  Google Scholar 

  43. Hassan R, Bera T, Pastan I. Mesothelin: a new target for immunotherapy. Clin Cancer Res 2004;10:3937–3942.

    Article  PubMed  CAS  Google Scholar 

  44. Swierczynski SL, Maitra A, Abraham SC, et al. Analysis of novel markers in pancreatic and biliary carcinomas using microarrays. Hum Pathol 2004;35(3):357–366.

    Article  PubMed  CAS  Google Scholar 

  45. Thomas AM, Santarsiero LM, Lutz ER, et al. Mesothelin-specific CD8+ T cell responses provide evidence of in vivo cross priming by antigen presenting cells in vaccinated pancreatic cancer patients. J Exp Med 2004;200:297–306.

    Article  PubMed  CAS  Google Scholar 

  46. Morse M, Clay T, Hobeika A, et al. Phase I study of immunization with dendritic cells modified with recombinant fowlpox encoding carcinoembryonic antigen (CEA) and costimulatory molecules. Clin Cancer Res 2005;11:3017–3024.

    Article  PubMed  CAS  Google Scholar 

  47. Wang Q, Liu Y, Wang J, et al. Induction of allospecific tolerance by immature dendritic cells genetically modified to express soluble TNF-receptor. J Immunol 2006;177:2175–2185.

    PubMed  CAS  Google Scholar 

  48. Kim R, Emi M, Tanabe K, et al. Tumor driven evolution of immunosuppressive networks during malignant progression. Cancer Res 2006;66:5527–5536.

    Article  PubMed  CAS  Google Scholar 

  49. Mahnke K, Enk AH. Dendritic cells: key cells for induction of regulatory T cells? Curr Top Microbiol Immunol 2005;293:133–150.

    Article  PubMed  CAS  Google Scholar 

  50. Mende I, Engleman EG. Breaking tolerance to tumors with dendritic cell-based immunotherapy. Ann N Y Acad Sci 2005;1058:96–104.

    Article  PubMed  CAS  Google Scholar 

  51. Kochi SK, Killeen KP, Ryan US. Advances in the development of bacterial vector technology. Expert Rev Vaccines 2003;2:31–43.

    Article  PubMed  CAS  Google Scholar 

  52. Dietrich G, Spreng S, Favre D, et al. Live attenuated bacteria as vectors to deliver plasmid DNA vaccines. Curr Opin Mol Ther 2003;5:10–19.

    PubMed  Google Scholar 

  53. Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4 mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 2001;19:565–594.

    Article  PubMed  CAS  Google Scholar 

  54. Kwon ED, Foster BA, Hurwitz AA, et al. Elimination of residual metastatic prostate cancer after surgery and adjunctive cytotoxic T lymphocyte associated antigen 4 (CTLA-4) blockade immunotherapy. Proc Natl Acad Sci U S A 1999;96:15074–15079.

    Article  PubMed  CAS  Google Scholar 

  55. Maker AV, Yang JC, Sherry RM, et al. Intrapatient dose escalation of anti-CTLA-4 antibody in patients with metastatic melanoma. J Immunother 2006;29:455–463.

    Article  PubMed  CAS  Google Scholar 

  56. Reuben JM, Lee BN, Li C, et al. Biologic and immunomodulatory events after CTAL-4 blockade with ticilimumab in patients with advanced malignant melanoma. Cancer 2006;106:2437–2444.

    Article  PubMed  CAS  Google Scholar 

  57. Maker AV, Attia P, Rosenberg SA. Analysis of the cellular mechanism of anti-tumor responses and autoimmunity in patients treated with CTLA-4 blockade. J Immunol 2005;175: 7746–7754.

    PubMed  CAS  Google Scholar 

  58. Attia P, Phan GQ, Maker AV, et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T lymphocyte-4. J Clin Oncol 2005;23: 6043–6053.

    Article  PubMed  CAS  Google Scholar 

  59. Movva S, Verschraegen C. The monoclonal antibody to cytotoxic T lymphocyte antigen-4; ipilumimab (MDX-010) a novel treatment strategy in cancer management. Expert Opin Biol Ther 2009;9:231–241.

    Article  PubMed  CAS  Google Scholar 

  60. Weber JS, O’Day S, Urba W, et al. Phase I/II study of ipilumimab for patients with metastatic melanoma. J Clin Oncol 2008;26:5950–5956.

    Article  PubMed  CAS  Google Scholar 

  61. Hodi FS, Butler M, Oble DA, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte associated antigen 4 in previously vaccinated patients. Proc Natl Acad Sci U S A 2008;105:3005–3010.

    Article  PubMed  CAS  Google Scholar 

  62. Laheru D, Lutz E, Burke J. Allogeneic granulocyte macrophage colony stimulating factor secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility and immune activation. Clin Cancer Res 2008;14:1455–1463.

    Article  PubMed  CAS  Google Scholar 

  63. Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008;321:1801–1806.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Laheru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Laheru, D. (2011). Cancer Vaccines. In: Garrett-Mayer, E. (eds) Principles of Anticancer Drug Development. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7358-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7358-0_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7357-3

  • Online ISBN: 978-1-4419-7358-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics