Skip to main content

Imaging Studies in Anticancer Drug Development

  • Chapter
  • First Online:
Principles of Anticancer Drug Development

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The ability to assay tumor biologic features and the impact of drugs on tumor biology is fundamental to drug development. Advances in our ability to measure genomics, gene expression, protein expression, and cellular biology have led to a host of new targets for anticancer drug therapy. In translating new drugs into clinical trials and clinical practice, these same assays serve to identify patients most likely to benefit from specific anticancer treatments. As cancer therapy becomes more individualized and targeted, there is an increasing need to characterize tumors and identify therapeutic targets to select therapy most likely to be successful in treating the individual patient’s cancer. An example is the identification of HER2 overexpression to predict response to HER2-directed therapies such as trastuzumab and lapatinib [1]. There is a complementary need to assay cancer drug pharmacodynamics, namely the effect of a particular drug on the tumor, to determine whether or not the drug has “hit” the target and whether the drug is likely to be effective in slowing tumor growth and killing the cancer [2]. This is particular important in early drug trials as proof of mechanism and prediction of the likelihood of anticancer activity in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344(11):783–92.

    Article  PubMed  CAS  Google Scholar 

  2. Ratain MJ, Schilsky RL, Conley BA, Egorin MJ. Pharmacodynamics in cancer therapy. J Clin Oncol 1990;8(10):1739–53.

    PubMed  CAS  Google Scholar 

  3. Hutter H. Fluorescent reporter methods. Methods Mol Biol 2006;351:155–73.

    PubMed  CAS  Google Scholar 

  4. Blasberg RG. Imaging update: new windows, new views. Clin Cancer Res 2007;13(12):3444–8.

    Article  PubMed  Google Scholar 

  5. Mankoff DA. A definition of molecular imaging. J Nucl Med 2007;48(6):18N, 21N.

    PubMed  Google Scholar 

  6. Mankoff DA, O’Sullivan F, Barlow WE, Krohn KA. Molecular imaging research in the outcomes era: measuring outcomes for individualized cancer therapy. Acad Radiol 2007;14(4):398–405.

    Article  PubMed  Google Scholar 

  7. Husband JE. Monitoring tumor response. Eur Radiol 1996;6:775–85.

    PubMed  CAS  Google Scholar 

  8. Benard F, Turcotte E. Imaging in breast cancer: single-photon computed tomography and positron-emission tomography. Breast Cancer Res 2005;7(4):153–62.

    Article  PubMed  CAS  Google Scholar 

  9. Mankoff DA, Link JM, Linden HM, Sundararajan L, Krohn KA. Tumor receptor imaging. J Nucl Med 2008;49(Suppl 2):149S–63S.

    Article  PubMed  CAS  Google Scholar 

  10. Welch DR. Microarrays bring new insights into understanding of breast cancer metastasis to bone. Breast Cancer Res 2004;6(2):61–4.

    Article  PubMed  CAS  Google Scholar 

  11. Hoekstra CJ, Paglianiti I, Hoekstra OS, Smit EF, Postmus PE, Teule GJ, et al. Monitoring response to therapy in cancer using [18F]-2-fluoro-2-deoxy-D-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med 2000;27:731–43.

    Article  PubMed  CAS  Google Scholar 

  12. Lammertsma AA. Measurement of tumor response using [18F]-2-fluoro-2-deoxy-D-glucose and positron-emission tomography. J Clin Pharmacol 2001;(Suppl):104S–106S.

    Google Scholar 

  13. Sasongko L, Link JM, Muzi M, Mankoff DA, Yang X, Collier AC, et al. Imaging P-glycoprotein transport activity at the human blood-brain barrier with positron emission tomography. Clin Pharmacol Ther 2005;77(6):503–14.

    Article  PubMed  CAS  Google Scholar 

  14. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000;92(3):205–16.

    Article  PubMed  CAS  Google Scholar 

  15. Weber WA. Positron emission tomography as an imaging biomarker. J Clin Oncol 2006;24(20):3282–92.

    Article  PubMed  CAS  Google Scholar 

  16. Bloch SH, Dayton PA, Ferrara KW. Targeted imaging using ultrasound contrast agents. Progress and opportunities for clinical and research applications. IEEE Eng Med Biol Mag 2004;23(5):18–29.

    Article  PubMed  Google Scholar 

  17. Bolan PJ, Nelson MT, Yee D, Garwood M. Imaging in breast cancer: magnetic resonance spectroscopy. Breast Cancer Res 2005;7(4):149–52.

    Article  PubMed  CAS  Google Scholar 

  18. Lehman CD, Schnall MD. Imaging in breast cancer: magnetic resonance imaging. Breast Cancer Res 2005;7(5):215–9.

    Article  PubMed  Google Scholar 

  19. Mankoff D. Imaging in breast cancer – breast cancer imaging revisited. Breast Cancer Res 2005;7(6):276–8.

    Article  PubMed  Google Scholar 

  20. Berger F, Gambhir SS. Recent advances in imaging endogenous or transferred gene expression utilizing radionuclide technologies in living subjects: applications to breast cancer. Breast Cancer Res 2001;3(1):28–35.

    Article  PubMed  CAS  Google Scholar 

  21. Gillies RJ, Morse DL. In vivo magnetic resonance spectroscopy in cancer. Annu Rev Biomed Eng 2005;7:287–326.

    Article  PubMed  CAS  Google Scholar 

  22. Leach MO. Magnetic resonance spectroscopy (MRS) in the investigation of cancer at The Royal Marsden Hospital and The Institute of Cancer Research. Phys Med Biol 2006;51(13):R61–82.

    Article  PubMed  CAS  Google Scholar 

  23. Siegel BA, Dehdashti F. Oncologic PET/CT: current status and controversies. Eur Radiol 2005;15(Suppl 4):D127–32.

    PubMed  Google Scholar 

  24. Galbraith SM. MR in oncology drug development. NMR Biomed 2006;19(6):681–9.

    Article  PubMed  CAS  Google Scholar 

  25. Saslow D, Boetes C, Burke W, Harms S, Leach MO, Lehman CD, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 2007;57(2):75–89.

    Article  PubMed  Google Scholar 

  26. Padhani AR, Hayes C, Assersohn L, Powles T, Makris A, Suckling J, et al. Prediction of clinicopathologic response of breast cancer to primary chemotherapy at contrast-enhanced MR imaging: initial clinical results. Radiology 2006;239(2):361–74.

    Article  PubMed  Google Scholar 

  27. Wedam SB, Low JA, Yang SX, Chow CK, Choyke P, Danforth D, et al. Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J Clin Oncol 2006;24(5):769–77.

    Article  PubMed  CAS  Google Scholar 

  28. Yankeelov TE, Lepage M, Chakravarthy A, Broome EE, Niermann KJ, Kelley MC, et al. Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results. Magn Reson Imaging 2007;25(1):1–13.

    Article  PubMed  Google Scholar 

  29. Choyke PL, Knopp MV, Libutti SK. Special techniques for imaging blood flow to tumors. Cancer J 2002;8(2):109–18.

    Article  PubMed  Google Scholar 

  30. Leach MO, Brindle KM, Evelhoch JL, Griffiths JR, Horsman MR, Jackson A, et al. Assessment of antiangiogenic and antivascular therapeutics using MRI: recommendations for appropriate methodology for clinical trials. Br J Radiol 2003;76(Spec No 1):S87–91.

    Article  PubMed  Google Scholar 

  31. Padhani AR, Leach MO. Antivascular cancer treatments: functional assessments by dynamic contrast-enhanced magnetic resonance imaging. Abdom Imaging 2005;30(3):324–41.

    Article  PubMed  CAS  Google Scholar 

  32. Sosnovik DE, Weissleder R. Emerging concepts in molecular MRI. Curr Opin Biotechnol 2007;18(1):4–10.

    Article  PubMed  CAS  Google Scholar 

  33. Morse DL, Galons JP, Payne CM, Jennings DL, Day S, Xia G, et al. MRI-measured water mobility increases in response to chemotherapy via multiple cell-death mechanisms. NMR Biomed 2007;20(6):602–14.

    Article  PubMed  CAS  Google Scholar 

  34. Theilmann RJ, Borders R, Trouard TP, Xia G, Outwater E, Ranger-Moore J, et al. Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy. Neoplasia 2004;6(6):831–7.

    Article  PubMed  Google Scholar 

  35. Hamstra DA, Chenevert TL, Moffat BA, Johnson TD, Meyer CR, Mukherji SK, et al. Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma. Proc Natl Acad Sci USA 2005;102(46):16759–64.

    Article  PubMed  CAS  Google Scholar 

  36. Stephen RM, Gillies RJ. Promise and progress for functional and molecular imaging of response to targeted therapies. Pharm Res 2007;24(6):1172–85.

    Article  PubMed  CAS  Google Scholar 

  37. Mountford C, Lean C, Malycha P, Russell P. Proton spectroscopy provides accurate pathology on biopsy and in vivo. J Magn Reson Imaging 2006;24(3):459–77.

    Article  PubMed  Google Scholar 

  38. McKnight TR, Noworolski SM, Vigneron DB, Nelson SJ. An automated technique for the quantitative assessment of 3D-MRSI data from patients with glioma. J Magn Reson Imaging 2001;13(2):167–77.

    Article  PubMed  CAS  Google Scholar 

  39. Meisamy S, Bolan PJ, Baker EH, Bliss RL, Gulbahce E, Everson LI, et al. Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo (1)H MR spectroscopy – a pilot study at 4 T. Radiology 2004;233(2):424–31.

    Article  PubMed  Google Scholar 

  40. Murphy PS, Viviers L, Abson C, Rowland IJ, Brada M, Leach MO, et al. Monitoring temozolomide treatment of low-grade glioma with proton magnetic resonance spectroscopy. Br J Cancer 2004;90(4):781–6.

    Article  PubMed  CAS  Google Scholar 

  41. Mankoff DA, Eary JF, Link JM, Muzi M, Rajendran JG, Spence AM, et al. Tumor-specific positron emission tomography imaging in patients: [18F] fluorodeoxyglucose and beyond. Clin Cancer Res 2007;13(12):3460–9.

    Article  PubMed  CAS  Google Scholar 

  42. Mankoff DA, Eubank WB. Current and future use of positron emission tomography (PET) in breast cancer. J Mammary Gland Biol Neoplasia 2006;11(2):125–36.

    Article  PubMed  Google Scholar 

  43. Quon A, Gambhir SS. FDG-PET and beyond: molecular breast cancer imaging. J Clin Oncol 2005;23(8):1664–73.

    Article  PubMed  CAS  Google Scholar 

  44. Cherry SR. The 2006 Henry N. Wagner Lecture: Of mice and men (and positrons) – advances in PET imaging technology. J Nucl Med 2006;47(11):1735–45.

    PubMed  CAS  Google Scholar 

  45. Rosen EL, Turkington TG, Soo MS, Baker JA, Coleman RE. Detection of primary breast carcinoma with a dedicated, large-field-of-view FDG PET mammography device: initial experience. Radiology 2005;234(2):527–34.

    Article  PubMed  Google Scholar 

  46. Alessio AM, Kinahan PE, Cheng PM, Vesselle H, Karp JS. PET/CT scanner instrumentation, challenges, and solutions. Radiol Clin North Am 2004;42(6):1017–32, vii.

    Article  PubMed  Google Scholar 

  47. Tromberg BJ, Cerussi A, Shah N, Compton M, Durkin A, Hsiang D, et al. Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy. Breast Cancer Res 2005;7(6):279–85.

    Article  PubMed  Google Scholar 

  48. Henriquez NV, van Overveld PG, Que I, Buijs JT, Bachelier R, Kaijzel EL, et al. Advances in optical imaging and novel model systems for cancer metastasis research. Clin Exp Metastasis 2007;24(8):699–705.

    Article  PubMed  Google Scholar 

  49. Kumar S, Richards-Kortum R. Optical molecular imaging agents for cancer diagnostics and therapeutics. Nanomedicine 2006;1(1):23–30.

    Article  PubMed  CAS  Google Scholar 

  50. Sokolov K, Nida D, Descour M, Lacy A, Levy M, Hall B, et al. Molecular optical imaging of therapeutic targets of cancer. Adv Cancer Res 2007;96:299–344.

    Article  PubMed  CAS  Google Scholar 

  51. Mendelson EB. Problem-solving ultrasound. Radiol Clin North Am 2004;42(5):909–18, vii.

    Article  PubMed  Google Scholar 

  52. Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 2007;9:415–47.

    Article  PubMed  CAS  Google Scholar 

  53. Huang SW, Kim K, Witte RS, Olafsson R, O’Donnell M. Inducing and imaging thermal strain using a single ultrasound linear array. IEEE Trans Ultrason Ferroelectr Freq Control 2007;54(9):1718–20.

    Article  PubMed  Google Scholar 

  54. Brenner RJ, Parisky Y. Alternative breast-imaging approaches. Radiol Clin North Am 2007;45(5):907–23, viii.

    Article  PubMed  Google Scholar 

  55. Jordan VC, Brodie AM. Development and evolution of therapies targeted to the estrogen receptor for the treatment and prevention of breast cancer. Steroids 2007;72(1):7–25.

    Article  PubMed  CAS  Google Scholar 

  56. Katzenellenbogen J. The pharmacology of steroid radiopharmaceuticals: specific and non-specific binding and uptake selectivity. In: Nunn A, editor. Radiopharmaceuticals: chemistry and pharmacology. New York, NY: Marcel Dekker; 1992. pp. 297–331.

    Google Scholar 

  57. Katzenellenbogen JA, Welch MJ, Dehdashti F. The development of estrogen and progestin radiopharmaceuticals for imaging breast cancer. Anticancer Res 1997;17:1573–6.

    PubMed  CAS  Google Scholar 

  58. Linden HM, Stekhova SA, Link JM, Gralow JR, Livingston RB, Ellis GK, et al. Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J Clin Oncol 2006;24(18):2793–9.

    Article  PubMed  CAS  Google Scholar 

  59. Dimitrakopoulou-Strauss A, Strauss LG, Schlag P, Hohenberger P, Mohler M, Oberdorfer F, et al. Fluorine-18-fluorouracil to predict therapy response in liver metastases from colorectal carcinoma. J Nucl Med 1998;39(7):1197–202.

    PubMed  CAS  Google Scholar 

  60. Wolf W, Presant CA, Waluch V. 19F-MRS studies of fluorinated drugs in humans. Adv Drug Deliv Rev 2000;41(1):55–74.

    Article  PubMed  CAS  Google Scholar 

  61. Perik PJ, Lub-De Hooge MN, Gietema JA, van der Graaf WT, de Korte MA, Jonkman S, et al. Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 2006;24(15):2276–82.

    Article  PubMed  CAS  Google Scholar 

  62. Smith-Jones PM, Solit DB, Akhurst T, Afroze F, Rosen N, Larson SM. Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat Biotechnol 2004;22(6):701–6.

    Article  PubMed  CAS  Google Scholar 

  63. Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, et al. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res 2006;12(13):3942–9.

    Article  PubMed  CAS  Google Scholar 

  64. Laking GR, West C, Buckley DL, Matthews J, Price PM. Imaging vascular physiology to monitor cancer treatment. Crit Rev Oncol Hematol 2006;58(2):95–113.

    Article  PubMed  Google Scholar 

  65. Sledge GJ, McGuire W. Steroid hormone receptors in human breast cancer. Adv Cancer Res 1983;38:61–75.

    Article  PubMed  CAS  Google Scholar 

  66. Pujol P, Hilsenbeck SG, Chamness GC, Elledge RM. Rising levels of estrogen receptor in breast cancer over 2 decades. Cancer 1994;74(5):1601–6.

    Article  PubMed  CAS  Google Scholar 

  67. Briasoulis E, Karavasilis V, Kostadima L, Ignatiadis M, Fountzilas G, Pavlidis N. Metastatic breast carcinoma confined to bone: portrait of a clinical entity. Cancer 2004;101(7):1524–8.

    Article  PubMed  Google Scholar 

  68. Osborne CK, Yochmowitz MG, Knight WA, 3rd, McGuire WL. The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer 1980;46(12 Suppl):2884–8.

    Article  PubMed  CAS  Google Scholar 

  69. Bloom ND, Tobin EH, Schreibman B, Degenshein GA. The role of progesterone receptors in the management of advanced breast cancer. Cancer 1980;45(12):2992–7.

    Article  PubMed  CAS  Google Scholar 

  70. Mouridsen H, Gershanovich M, Sun Y, Perez-Carrion R, Boni C, Monnier A, et al. Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a phase III study of the International Letrozole Breast Cancer Group. J Clin Oncol 2001;19(10):2596–606.

    PubMed  CAS  Google Scholar 

  71. Nabholtz JM, Buzdar A, Pollak M, Harwin W, Burton G, Mangalik A, et al. Anastrozole is superior to tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women: results of a North American multicenter randomized trial. Arimidex Study Group. J Clin Oncol 2000;18(22):3758–67.

    PubMed  CAS  Google Scholar 

  72. Buzdar A, Douma J, Davidson N, Elledge R, Morgan M, Smith R, et al. Phase III, multicenter, double-blind, randomized study of letrozole, an aromatase inhibitor, for advanced breast cancer versus megestrol acetate. J Clin Oncol 2001;19(14):3357–66.

    PubMed  CAS  Google Scholar 

  73. Fuqua SA. The role of estrogen receptors in breast cancer metastasis. J Mammary Gland Biol Neoplasia 2001;6(4):407–17.

    Article  PubMed  CAS  Google Scholar 

  74. Sundararajan L, Linden HM, Link JM, Krohn KA, Mankoff DA. 18F-Fluoroestradiol. Semin Nucl Med 2007;37(6):470–6.

    Article  PubMed  Google Scholar 

  75. Kiesewetter DO, Kilbourn MR, Landvatter SW, Heiman DF, Katzenellenbogen JA, Welch MJ. Preparation of four fluorine-18-labeled estrogens and their selective uptakes in target tissues of immature rats. J Nucl Med 1984;25(11):1212–21.

    PubMed  CAS  Google Scholar 

  76. Mankoff DA, Tewson TJ, Eary JF. Analysis of blood clearance and labeled metabolites for the estrogen receptor tracer [F-18]-16 alpha-fluoroestradiol (FES). Nucl Med Biol 1997;24(4):341–8.

    Article  PubMed  CAS  Google Scholar 

  77. Mankoff DA, Peterson LM, Tewson TJ, Link JM, Gralow JR, Graham MM, et al. [18F]fluoroestradiol radiation dosimetry in human PET studies. J Nucl Med 2001;42(4):679–84.

    PubMed  CAS  Google Scholar 

  78. Tewson TJ, Mankoff DA, Peterson LM, Woo I, Petra P. Interactions of 16alpha-[18F]-fluoroestradiol (FES) with sex steroid binding protein (SBP). Nucl Med Biol 1999;26(8):905–13.

    Article  PubMed  CAS  Google Scholar 

  79. Mintun MA, Welch MJ, Siegel BA, Mathias CJ, Brodack JW, McGuire AH, et al. Breast cancer: PET imaging of estrogen receptors. Radiology 1988;169(1):45–8.

    PubMed  CAS  Google Scholar 

  80. Peterson LM, Mankoff DA, Lawton T, Yagle K, Schubert EK, Stekhova S, et al. Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol. J Nucl Med 2008;49(3):367–74.

    Article  PubMed  Google Scholar 

  81. Mortimer JE, Dehdashti F, Siegel BA, Trinkaus K, Katzenellenbogen JA, Welch MJ. Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J Clin Oncol 2001;19(11):2797–803.

    PubMed  CAS  Google Scholar 

  82. Nakanishi T. Drug transporters as targets for cancer chemotherapy. Cancer Genomics Proteomics 2007;4(3):241–54.

    PubMed  CAS  Google Scholar 

  83. Pauwels EK, Erba P, Mariani G, Gomes CM. Multidrug resistance in cancer: its mechanism and its modulation. Drug News Perspect 2007;20(6):371–7.

    Article  PubMed  CAS  Google Scholar 

  84. Fukumura D, Jain RK. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 2007;74(2–3):72–84.

    Article  PubMed  CAS  Google Scholar 

  85. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005;307(5706):58–62.

    Article  PubMed  CAS  Google Scholar 

  86. Sutherland R. Tumor hypoxia and gene expression. Acta Oncologica 1998;37:567–74.

    Article  PubMed  CAS  Google Scholar 

  87. Teicher BA. Hypoxia and drug resistance. Cancer Metastasis Rev 1994;13:139–68.

    Article  PubMed  CAS  Google Scholar 

  88. Jain RK. Haemodynamic and transport barriers to the treatment of solid tumors. Int J Radiat Biol 1991;60:85–100.

    Article  PubMed  CAS  Google Scholar 

  89. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007;11(1):83–95.

    Article  PubMed  CAS  Google Scholar 

  90. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 2004;10(2):145–7.

    Article  PubMed  CAS  Google Scholar 

  91. Hendrikse NH, de Vries EG, Eriks-Fluks L, van der Graaf WT, Hospers GA, Willemsen AT, et al. A new in vivo method to study P-glycoprotein transport in tumors and the blood-brain barrier. Cancer Res 1999;59(10):2411–6.

    PubMed  CAS  Google Scholar 

  92. Piwnica-Worms D, Chiu ML, Budding M, Kronauge JF, Kramer RA, Croop JM. Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res 1993;53(5):977–84.

    PubMed  CAS  Google Scholar 

  93. Ciarmiello A, Vecchio SD, Silvestro P, Potenta M, Carriero M, Thomas R, et al. Tumor clearance of technetium 99m-sestamibi as a predictor of response to neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol 1998;16(5):1677–83.

    PubMed  CAS  Google Scholar 

  94. Kurdziel KA, Kalen JD, Hirsch JI, Wilson JD, Agarwal R, Barrett D, et al. Imaging multidrug resistance with 4-[18F]fluoropaclitaxel. Nucl Med Biol 2007;34(7):823–31.

    Article  PubMed  CAS  Google Scholar 

  95. Hsueh WA, Kesner AL, Gangloff A, Pegram MD, Beryt M, Czernin J, et al. Predicting chemotherapy response to paclitaxel with 18F-Fluoropaclitaxel and PET. J Nucl Med 2006;47(12):1995–9.

    PubMed  CAS  Google Scholar 

  96. Padhani AR, Krohn KA, Lewis JS, Alber M. Imaging oxygenation of human tumours. Eur Radiol 2007;17(4):861–72.

    Article  PubMed  Google Scholar 

  97. Rajendran JG, Krohn KA. Imaging hypoxia and angiogenesis in tumors. Radiol Clin North Am 2005;43(1):169–87.

    Article  PubMed  Google Scholar 

  98. Dehdashti F, Grigsby PW, Mintun MA, Lewis JS, Siegel BA, Welch MJ. Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response – a preliminary report. Int J Radiat Oncol Biol Phys 2003;55(5):1233–8.

    Article  PubMed  Google Scholar 

  99. Rajendran JG, Schwartz DL, O’Sullivan J, Peterson LM, Ng P, Scharnhorst J, et al. Tumor hypoxia imaging with F-18 FMISO PET in head and neck cancer: value of pre-therapy FMISO uptake in predicting survival. Clin Cancer Res 2006;12:5435–41.

    Article  PubMed  CAS  Google Scholar 

  100. Spence AM, Muzi M, Swanson KR, O’Sullivan F, Rockhill JK, Rajendran JG, et al. Regional hypoxia in glioblastoma multiforme quantified with [18F]-fluoromisonidazole positron emission tomography before radiotherapy: correlation with time to progression and survival. Clin Cancer Res 2008;14(9):2623–30.

    Article  PubMed  CAS  Google Scholar 

  101. Rischin D, Hicks RJ, Fisher R, Binns D, Corry J, Porceddu S, et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 2006;24(13):2098–104.

    Article  PubMed  Google Scholar 

  102. Dowsett M, Smith IE, Ebbs SR, Dixon JM, Skene A, Griffith C, et al. Short-term changes in Ki-67 during neoadjuvant treatment of primary breast cancer with anastrozole or tamoxifen alone or combined correlate with recurrence-free survival. Clin Cancer Res 2005;11(2 Pt 2):951s–8s.

    PubMed  CAS  Google Scholar 

  103. Calvo E, Malik SN, Siu LL, Baillargeon GM, Irish J, Chin SF, et al. Assessment of erlotinib pharmacodynamics in tumors and skin of patients with head and neck cancer. Ann Oncol 2007;18(4):761–7.

    Article  PubMed  CAS  Google Scholar 

  104. Schelling M, Avril N, Nahrig J, Kuhn W, Romer W, Sattler D, et al. Positron emission tomography using [18F] fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 2000;18:1689–95.

    PubMed  CAS  Google Scholar 

  105. Smith I, Welch A, Hutcheon A, Miller I, Payne S, Chilcott F, et al. Positron emission tomography using [18F]-fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 2000;18:1676–88.

    PubMed  CAS  Google Scholar 

  106. Wahl RL, Zasadny K, Helvie M, et al. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol 1993;11:2101–11.

    PubMed  CAS  Google Scholar 

  107. Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med 2005;46(6):983–95.

    PubMed  CAS  Google Scholar 

  108. Romer W, Hanauske A, Ziegler S, Thodtmann R, Weber W, Fuchs C, et al. Positron emission tomography in non-Hodgkin’s lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood 1998;91:4464–71.

    PubMed  CAS  Google Scholar 

  109. Stroobants S, Goeminne J, Seegers M, Dimitrijevic S, Dupont P, Nuyts J, et al. 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur J Cancer 2003;39(14):2012–20.

    Article  PubMed  CAS  Google Scholar 

  110. Banzo I, Quirce R, Martinez-Rodriguez I, Jimenez-Bonilla J, Sainz-Esteban A, Barragan J, et al. F-18 FDG PET/CT assessment of gastrointestinal stromal tumor response to sunitinib malate therapy. Clin Nucl Med 2008;33(3):211–2.

    Article  PubMed  Google Scholar 

  111. Su H, Bodenstein C, Dumont RA, Seimbille Y, Dubinett S, Phelps ME, et al. Monitoring tumor glucose utilization by positron emission tomography for the prediction of treatment response to epidermal growth factor receptor kinase inhibitors. Clin Cancer Res 2006;12(19):5659–67.

    Article  PubMed  CAS  Google Scholar 

  112. Glunde K, Jacobs MA, Bhujwalla ZM. Choline metabolism in cancer: implications for diagnosis and therapy. Expert Rev Mol Diagn 2006;6(6):821–9.

    Article  PubMed  CAS  Google Scholar 

  113. Martiat P, Ferrant A, Labar D, Cogneau M, Bol A, Michel C, et al. In vivo measurement of carbon-11 thymidine uptake in non-Hodgkin’s lymphoma using positron emission tomography. J Nucl Med 1988;29(10):1633–7.

    PubMed  CAS  Google Scholar 

  114. Shields AF, Mankoff DA, Link JM, Graham MM, Eary JF, Kozawa SM, et al. Carbon-11-thymidine and FDG to measure therapy response. J Nucl Med 1998;39:1757–62.

    PubMed  CAS  Google Scholar 

  115. Mankoff DA, Shields AF, Krohn KA. PET imaging of cellular proliferation. Radiol Clin North Am 2005;43(1):153–67.

    Article  PubMed  Google Scholar 

  116. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998;4(11):1334–6.

    Article  PubMed  CAS  Google Scholar 

  117. Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO. Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 2007;34(9):1339–47.

    Article  PubMed  Google Scholar 

  118. Pio BS, Park CK, Pietras R, Hsueh WA, Satyamurthy N, Pegram MD, et al. Usefulness of 3′-[F-18]fluoro-3′-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy. Mol Imaging Biol 2006;8(1):36–42.

    Article  PubMed  Google Scholar 

  119. Wieder HA, Geinitz H, Rosenberg R, Lordick F, Becker K, Stahl A, et al. PET imaging with [18F]3′-deoxy-3′-fluorothymidine for prediction of response to neoadjuvant treatment in patients with rectal cancer. Eur J Nucl Med Mol Imaging 2007;34(6):878–83.

    Article  PubMed  CAS  Google Scholar 

  120. Hockenbery D. Defining apoptosis. Am J Pathol 1995;146(1):16–9.

    PubMed  CAS  Google Scholar 

  121. Blankenberg F, Katsikis P, Tait J, Davis R, Naumovski L, Ohtsuki K, et al. Imaging of apoptosis (programmed cell death) with 99mTc annexin V. J Nucl Med 1999;40:184–191.

    PubMed  CAS  Google Scholar 

  122. van de Wiele C, Lahorte C, Vermeersch H, Loose D, Mervillie K, Steinmetz ND, et al. Quantitative tumor apoptosis imaging using technetium-99m-HYNIC annexin V single photon emission computed tomography. J Clin Oncol 2003;21(18):3483–7.

    Article  PubMed  Google Scholar 

  123. Mandl SJ, Mari C, Edinger M, Negrin RS, Tait JF, Contag CH, et al. Multi-modality imaging identifies key times for annexin V imaging as an early predictor of therapeutic outcome. Mol Imaging 2004;3(1):1–8.

    Article  PubMed  Google Scholar 

  124. Collingridge DR, Glaser M, Osman S, Barthel H, Hutchinson OC, Luthra SK, et al. In vitro selectivity, in vivo biodistribution and tumour uptake of annexin V radiolabelled with a positron emitting radioisotope. Br J Cancer 2003;89(7):1327–33.

    Article  PubMed  CAS  Google Scholar 

  125. Yagle KJ, Eary JF, Tait JF, Grierson JR, Link JM, Lewellen B, et al. Evaluation of 18F-annexin V as a PET imaging agent in an animal model of apoptosis. J Nucl Med 2005;46(4):658–66.

    PubMed  CAS  Google Scholar 

  126. Hamstra DA, Rehemtulla A, Ross BD. Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol 2007;25(26):4104–9.

    Article  PubMed  Google Scholar 

  127. Lee KC, Moffat BA, Schott AF, Layman R, Ellingworth S, Juliar R, et al. Prospective early response imaging biomarker for neoadjuvant breast cancer chemotherapy. Clin Cancer Res 2007;13(2 Pt 1):443–50.

    Article  PubMed  CAS  Google Scholar 

  128. Wells P, Gunn RN, Alison M, Steel C, Golding M, Ranicar AS, et al. Assessment of proliferation in vivo using 2-[(11)C]thymidine positron emission tomography in advanced intra-abdominal malignancies. Cancer Res 2002;62(20):5698–702.

    PubMed  CAS  Google Scholar 

  129. Linden HM, Link JM, Stekhova S, Livingston RB, Gralow JR, Ellis GK, et al. Serial 18F-fluoroestradiol positron emission tomography (FES PET) measures estrogen receptor binding during endocrine therapy. Breast Cancer Res Treat 2005;94(S1):S237.

    Google Scholar 

  130. Cachin F, Prince HM, Hogg A, Ware RE, Hicks RJ. Powerful prognostic stratification by [18F]fluorodeoxyglucose positron emission tomography in patients with metastatic breast cancer treated with high-dose chemotherapy. J Clin Oncol 2006;24(19):3026–31.

    Article  PubMed  Google Scholar 

  131. Mac Manus MP, Hicks RJ, Ball DL, Kalff V, Matthews JP, Salminen E, et al. F-18 fluorodeoxyglucose positron emission tomography staging in radical radiotherapy candidates with nonsmall cell lung carcinoma: powerful correlation with survival and high impact on treatment. Cancer 2001;92(4):886–95.

    Article  PubMed  CAS  Google Scholar 

  132. Eary JF, O’Sullivan F, Powitan Y, Chandhury KR, Vernon C, Bruckner JD, et al. Sarcoma tumor FDG uptake measured by PET and patient outcome: a retrospective analysis. Eur J Nucl Med Mol Imaging 2002;29(9):1149–54.

    Article  PubMed  CAS  Google Scholar 

  133. Dunnwald LK, Gralow JR, Ellis GK, Livingston RB, Specht J, Doot RK, et al. Tumor metabolism and blood flow changes by PET: relation to survival in patients with neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol 2008;26(27):4449–57.

    Article  PubMed  CAS  Google Scholar 

  134. Partridge SC, Gibbs JE, Lu Y, Esserman LJ, Tripathy D, Wolverton DS, et al. MRI measurements of breast tumor volume predict response to neoadjuvant chemotherapy and recurrence-free survival. AJR Am J Roentgenol 2005;184(6):1774–81.

    PubMed  Google Scholar 

  135. Shankar LK, Hoffman JM, Bacharach S, Graham MM, Karp J, Lammertsma AA, et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med 2006;47(6):1059–66.

    PubMed  CAS  Google Scholar 

  136. Leach MO, Brindle KM, Evelhoch JL, Griffiths JR, Horsman MR, Jackson A, et al. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 2005;92(9):1599–610.

    Article  PubMed  CAS  Google Scholar 

  137. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, et al. Measurement of clinical and subclinical tumour response using [F-18]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. Eur J Cancer 1999;35:1773–82.

    Article  PubMed  CAS  Google Scholar 

  138. Juweid ME, Stroobants S, Hoekstra OS, Mottaghy FM, Dietlein M, Guermazi A, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol 2007;25(5):571–8.

    Article  PubMed  Google Scholar 

  139. Weber WA, Ziegler SI, Thodtmann R, Hanauske AR, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 1999;40(11):1771–7.

    PubMed  CAS  Google Scholar 

  140. Mankoff DA, Muzi M, Zabib H. Quantitative analysis of nuclear oncologic images. In: Zabib H, editor. Quantitative analysis of nuclear medicine images. Hingham, MA: Springer; 2004.

    Google Scholar 

  141. Huang S-C. Anatomy of SUV. Nucl Med Biol 2000;27:643–6.

    Article  PubMed  CAS  Google Scholar 

  142. Mankoff DA, Muzi M, Krohn KA. Quantitative positron emission tomography imaging to measure tumor response to therapy: what is the best method? Mol Imaging Biol 2003;5(5):281–5.

    Article  PubMed  Google Scholar 

  143. Krak NC, Hoekstra OS, Lammertsma AA. Measuring response to chemotherapy in locally advanced breast cancer: methodological considerations. Eur J Nucl Med Mol Imaging 2004;31(Suppl 1):S103–11.

    Article  PubMed  Google Scholar 

  144. Doot RK, Dunnwald LK, Schubert EK, Muzi M, Peterson LM, Kinahan PE, et al. Dynamic and static approaches to quantifying 18F-FDG uptake for measuring cancer response to therapy, including the effect of granulocyte CSF. J Nucl Med 2007;48(6):920–5.

    Article  PubMed  CAS  Google Scholar 

  145. Rijks LJ, Boer GJ, Endert E, de Bruin K, Janssen AG, van Royen EA. The Z-isomer of 11 beta-methoxy-17 alpha-[123I]iodovinylestradiol is a promising radioligand for estrogen receptor imaging in human breast cancer. Nucl Med Biol 1997;24(1):65–75.

    Article  PubMed  CAS  Google Scholar 

  146. Liu A, Carlson KE, Katzenellenbogen JA. Synthesis of high affinity fluorine-substituted ligands for the androgen receptor. Potential agents for imaging prostatic cancer by positron emission tomography. J Med Chem 1992;35(11):2113–29.

    Article  PubMed  CAS  Google Scholar 

  147. Velikyan I, Sundberg AL, Lindhe O, Hoglund AU, Eriksson O, Werner E, et al. Preparation and evaluation of (68)Ga-DOTA-hEGF for visualization of EGFR expression in malignant tumors. J Nucl Med 2005;46(11):1881–8.

    PubMed  CAS  Google Scholar 

  148. Cai W, Chen K, He L, Cao Q, Koong A, Chen X. Quantitative PET of EGFR expression in xenograft-bearing mice using (64)Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 2007;34(6):850–8.

    Article  PubMed  CAS  Google Scholar 

  149. Reilly RM, Chen P, Wang J, Scollard D, Cameron R, Vallis KA. Preclinical pharmacokinetic, biodistribution, toxicology, and dosimetry studies of 111In-DTPA-human epidermal growth factor: an auger electron-emitting radiotherapeutic agent for epidermal growth factor receptor-positive breast cancer. J Nucl Med 2006;47(6):1023–31.

    PubMed  CAS  Google Scholar 

  150. Adams KE, Ke S, Kwon S, Liang F, Fan Z, Lu Y, et al. Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. J Biomed Opt 2007;12(2):024017.

    Article  PubMed  CAS  Google Scholar 

  151. Rosenthal EL, Kulbersh BD, King T, Chaudhuri TR, Zinn KR. Use of fluorescent labeled anti-epidermal growth factor receptor antibody to image head and neck squamous cell carcinoma xenografts. Mol Cancer Ther 2007;6(4):1230–8.

    Article  PubMed  CAS  Google Scholar 

  152. Liu J, Li J, Rosol TJ, Pan X, Voorhees JL. Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro. Phys Med Biol 2007;52(16):4739–47.

    Article  PubMed  CAS  Google Scholar 

  153. Koyama Y, Hama Y, Urano Y, Nguyen DM, Choyke PL, Kobayashi H. Spectral fluorescence molecular imaging of lung metastases targeting HER2/neu. Clin Cancer Res 2007;13(10):2936–45.

    Article  PubMed  CAS  Google Scholar 

  154. Artemov D, Mori N, Ravi R, Bhujwalla ZM. Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res 2003;63(11):2723–7.

    PubMed  CAS  Google Scholar 

  155. Balon HR, Goldsmith SJ, Siegel BA, Silberstein EB, Krenning EP, Lang O, et al. Procedure guideline for somatostatin receptor scintigraphy with (111)In-pentetreotide. J Nucl Med 2001;42(7):1134–8.

    PubMed  CAS  Google Scholar 

  156. Koukouraki S, Strauss LG, Georgoulias V, Eisenhut M, Haberkorn U, Dimitrakopoulou-Strauss A. Comparison of the pharmacokinetics of 68Ga-DOTATOC and [18F]FDG in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging 2006;33(10):1115–22.

    Article  PubMed  CAS  Google Scholar 

  157. Anderson CJ, Dehdashti F, Cutler PD, Schwarz SW, Laforest R, Bass LA, et al. 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med 2001;42(2):213–21.

    PubMed  CAS  Google Scholar 

  158. Rajendran JG, Mankoff DA. Positron emission tomography imaging of hypoxia and blood flow in tumors. In: Shields AF, Price P, editors. Cancer drug discovery and development: in vivo imaging of cancer. Totowa, NJ: Humana Press; 2006. pp. 47–71.

    Google Scholar 

  159. Phelps M, Huang S, Hoffman E. Tomographic measurement of local cerebral glucose metabolic rate in humans with (18F)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979;6(5):371.

    Article  PubMed  CAS  Google Scholar 

  160. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 1979;44(1):127–37.

    Article  PubMed  CAS  Google Scholar 

  161. Arias-Mendoza F, Payne GS, Zakian KL, Schwarz AJ, Stubbs M, Stoyanova R, et al. In vivo 31P MR spectral patterns and reproducibility in cancer patients studied in a multi-institutional trial. NMR Biomed 2006;19(4):504–12.

    Article  PubMed  CAS  Google Scholar 

  162. Beaney R, Jones T, Lammertsma A, McKenzie D, Halnan K. Positron emission tomography for in-vivo measurement of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma. The Lancet 1984; 1(8369):131–134.

    Article  PubMed  CAS  Google Scholar 

  163. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. Visualization of prostate cancer with 11C-choline positron emission tomography. Eur Urol 2002;42(1):18–23.

    Article  PubMed  Google Scholar 

  164. Price DT, Coleman RE, Liao RP, Robertson CN, Polascik TJ, DeGrado TR. Comparison of [18F]fluorocholine and [18F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 2002;168(1):273–80.

    Article  PubMed  Google Scholar 

  165. Oyama N, Miller T, Dehdashti F, Siegel B, Fischer K, Michalski J, et al. 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 2003;44:549–555.

    PubMed  CAS  Google Scholar 

  166. Glunde K, Ackerstaff E, Mori N, Jacobs MA, Bhujwalla ZM. Choline phospholipid metabolism in cancer: consequences for molecular pharmaceutical interventions. Mol Pharm 2006;3(5):496–506.

    Article  PubMed  CAS  Google Scholar 

  167. Vander Borght T, Labar D, Pauwels S, Lambotte L. Production of [2-11C]thymidine for quantification of cellular proliferation with PET. Int J Rad Appl Instrum [A] 1991;42(1):103–4.

    Article  PubMed  CAS  Google Scholar 

  168. Zijlstra S, Gunawan J, Burchert W. Synthesis and evaluation of a 18F-labelled recombinant annexin-V derivative, for identification and quantification of apoptotic cells with PET. Appl Radiat Isot 2003;58(2):201–7.

    Article  PubMed  CAS  Google Scholar 

  169. Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, et al. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001;61(5):1781–5.

    PubMed  CAS  Google Scholar 

  170. Johansson LO, Bjornerud A, Ahlstrom HK, Ladd DL, Fujii DK. A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution. J Magn Reson Imaging 2001;13(4):615–8.

    Article  PubMed  CAS  Google Scholar 

  171. Chen X, Conti PS, Moats RA. In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts. Cancer Res 2004;64(21):8009–14.

    Article  PubMed  CAS  Google Scholar 

  172. Kurziel KA, Kieswetter DO, Carson RE, Eckelman WC, Herscovitch P. Biodistribution, radiation dose estimates, and in vivo P-gp modulation studies of 18F-paclitaxel in nonhuman primates. J Nucl Med 2003;44:1330–9.

    Google Scholar 

  173. Mankoff DA, Dehdashti F, Shields AF. Characterizing tumors using metabolic imaging: PET imaging of cellular proliferation and steroid receptors. Neoplasia 2000;2(1–2):71–88.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Mankoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mankoff, D.A. (2011). Imaging Studies in Anticancer Drug Development. In: Garrett-Mayer, E. (eds) Principles of Anticancer Drug Development. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7358-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7358-0_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7357-3

  • Online ISBN: 978-1-4419-7358-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics