Skip to main content

Abstract

Atherosclerosis is an arterial disease resulting in thickening of the arterial wall and occlusion of the vessels in advanced stages. In addition to hereditary and environmental factors, the effect of fluid-induced stresses on the arterial wall has also been implicated on the etiology of the disease due to the fact that the lesions are found in arterial curvature and branching sites with complex flow dynamics. In this chapter, the computational modeling of the fluid dynamics in the coronary arteries and the aorta is discussed in order to determine the relationship between wall shear stress and its temporal and spatial gradients with the disease progression. The importance of the use of three-dimensional geometry of the region of interest from imaged data, the effect of boundary conditions as well as the unsteady flow analysis on the results are discussed. The modeling of the flow dynamics in the abdominal aortic aneurysm (AAA) geometrical models, as well as models of vascular graft anastomotic regions is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGill HC Jr, McMahan CA, Herderick EE, Malcom GT, Tracy RE, Strong JP (2000) Origins of atherosclerosis in childhood and adolescence. Am J Clin Nutr 72:1307S–1315S

    Google Scholar 

  2. Kádár A, Glasz T (2001) Development of atherosclerosis and plaque biology. Cardiovasc Surg 9:109–121

    Article  Google Scholar 

  3. Newby AC (2000) An overview of the vascular response to injury: a tribute to the late Russell Ross. Toxicol Lett 112–113:519–529

    Article  Google Scholar 

  4. Martini F (2001) Fundamentals of anatomy and physiology, 5th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  5. Nerem RM (1992) Vascular fluid mechanics, the arterial wall, and atherosclerosis. J Biomech Eng 114:274–280

    Article  Google Scholar 

  6. Luscher TF, Barton M (1997) Biology of the endothelium. Clin Cardiol 8(Suppl II):II3–II10

    Google Scholar 

  7. Endemann DH, Schiffrin EL (2004) Endothelial dysfunction. J Am Soc Nephrol 15:1983–1992

    Article  Google Scholar 

  8. Cunningham KS, Gotlieb AI (2005) The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 85:9–23

    Article  Google Scholar 

  9. Tedgui A (1996) Endothelial permeability under physiological and pathological conditions. Prostaglandins Leukot Essent Fatty Acids 54:27–29

    Article  Google Scholar 

  10. Wu S, Shung KK (1996) Cyclic variation of Doppler power from whole blood under pulsatile flow. Ultrasound Med Biol 22(7):883–894

    Article  Google Scholar 

  11. Davies PF, Tripathi SC (1993) Mechanical stress mechanisms and the cell. Circ Res 72:239–245

    Google Scholar 

  12. Fox J, Hugh AE (1966) Localization of atheroma: a theory based on boundary layer separation. Br Heart J 26:388–399

    Article  Google Scholar 

  13. Fry DL (1973) Responses of the arterial wall to certain physical factors. In: Porter R, Knight J (eds) Atherosclerosis: initiating factors. Associated Scientific Publisher, Amsterdam, pp 93–125

    Google Scholar 

  14. Friedman M, O'Brien V, Ehrlich LW (1975) Calculations of pulsatile flow through a branch. Circ Res 36:277–285

    Google Scholar 

  15. Caro C, Fitz-Gerald JM, Schroter RC (1971) Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B 177(46):109–159

    Article  Google Scholar 

  16. Malek A, Izumo S (1995) Control of endothelial cell gene expression by flow. J Biomech 28(12):1515–1528

    Article  Google Scholar 

  17. Papadaki M, Eskin SG (1997) Effects of fluid shear stress on gene regulation of vascular cells. Biotechnol Prog 13:209–221

    Article  Google Scholar 

  18. Traub O, Berk BC (1997) Laminar shear stress; mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol 18:677–685

    Google Scholar 

  19. Garcia-Cardena G, Comander J, Anderson KR, Blackman BR, Gimbonre MA Jr (2001) Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci USA 98(8):4478–4485

    Article  Google Scholar 

  20. Dewey CFJ (1984) Effects of fluid flow on living vascular cells. J Biomech Eng 106: 31–35

    Article  Google Scholar 

  21. Nerem R, Alexander RW, Chapell DC, Medford RM, Varner SE, Taylor R (1998) The study of the influence of flow on vascular endothelial biology. Am J Med Sci 316(3):169–175

    Article  Google Scholar 

  22. Ballyk PD, Walsh C, Butany J, Ojha M (1998) Compliance mismatch may promote graft–artery intimal hyperplasia by altering suture-line stresses. J Biomech 31:229–237

    Article  Google Scholar 

  23. Deplano V, Souffi M (1999) Experimental and numerical study of pulsatile flows through stenosis: wall shear stress analysis. J Biomech 32:1081–1090

    Article  Google Scholar 

  24. Friedman MH, Bargeron CB, Duncan DD, Hutchins GM, Mark FF (1992) Effects of arterial compliance and non-Newtonian rheology on correlations between intimal thickness and wall shear. J Biomech Eng 114:317–320

    Article  Google Scholar 

  25. Hayashi K, Yanai Y, Naiki T (1996) A 3D LDA study of the relation between WSS and intimal hyperplasia in a human aortic bifurcation. J Biomech Eng 118:273–279

    Article  Google Scholar 

  26. Hofer M, Rappitsch G, Perktold K, Trubel W, Schima H (1996) Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia. J Biomech 29(10):1297–1308

    Article  Google Scholar 

  27. Keynton RS, Rittgers SE, Shu MCS (1991) The effect of angle and flow-rate upon hemodynamics in distal vascular graft anastomoses: an in vitro model study. J Biomech Eng 113:458–463

    Article  Google Scholar 

  28. Moore JA, Steinman DA, Prakash S, Johnston KW, Ethier CR (1999) A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses. J Biomech Eng 121:265–272

    Article  Google Scholar 

  29. da Silva AF, Carpenter T, How TV, Harris PL (1997) Stable vortices within vein cuffs inhibit anastomotic myointimal hyperplasia. Eur J Vasc Endovasc Surg 14:157–163

    Article  Google Scholar 

  30. Stanton AV (1999) Hemodynamics, wall mechanics and atheroma: a clinicians perspective. Proc Inst Mech Eng 213:385–390

    Article  Google Scholar 

  31. Tarbell JM (2003) Mass transport in the arteries and the localisation of atherosclerosis. Ann Rev Biomed Eng 5:79–118

    Article  Google Scholar 

  32. Berthier B, Bouzerar R, Legallais C (2002) Blood flow patterns in an anatomically realistic coronary vessel: influence of three different reconstruction methods. J Biomech 35: 1347–1356

    Article  Google Scholar 

  33. Asakura T, Karino T (1990) Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res 66:1045–1066

    Google Scholar 

  34. Perktold K, Rappitsch G (1995) Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J Biomech 28:845–856

    Article  Google Scholar 

  35. Kirpalani A, Park H, Butany J, Johnston KW, Ojha M (1999) Velocity and wall shear stress patterns in the human right coronary artery. J Biomech Eng 121:370–375

    Article  Google Scholar 

  36. Myers J, Moore JA, Ojha M, Johnston KW, Ethier CR (2001) Factors influencing blood flow patterns in the human right coronary artery. Ann Biomed Eng 29:109–120

    Article  Google Scholar 

  37. Zeng D, Ding Z, Freidman MH, Ethier CR (2003) Effects of cardiac motion on right coronary artery hemodynamics. Ann Biomed Eng 31:420–429

    Article  Google Scholar 

  38. Ramaswamy SD, Vigmostad SC, Wahle A, Lai YG, Olszewski ME, Braddy KC, Brennan TMH, Rossen JD, Sonka M, Chandran KB (2004) Fluid dynamic analysis in a human left anterior descending coronary artery with arterial motion. Ann Biomed Eng 32(12): 1628–1641

    Article  Google Scholar 

  39. Ramaswamy SD, Vigmostad SC, Wahle A, Lai YG, Olszewski ME, Braddy KC, Brennan TMH, Rossen JD, Sonka M, Chandran KB (2006) Comparison of left anterior descending coronary artery hemodynamics before and after angioplasty. J Biomech Eng 128:40–48

    Article  Google Scholar 

  40. Theodorakakos A, Gavaises M, Andriotis A, Zifan A, Liatsis P, Pantos I, Efstathopoulos EP, Katritsis D (2008) Simulation of cardiac motion on non-Newtonian, pulsating flow development in the human left anterior descending coronary artery. Phys Med Biol 53: 4875–4892

    Article  Google Scholar 

  41. Marcus M, Wright C, Doty D, Eastham C, Laughlin D, Krumm P, Fastenow C, Brody M (1981) Measurements of coronary velocity and reactive hyperemia in the human coronary circulation of humans. Circ Res 49:877–891

    Google Scholar 

  42. Sibley D, Millar HD, Hartley CJ, Whitlow PL (1986) Subselective measurement of coronary blood flow velocity using a steerable Doppler catheter. J Am Coll Cardiol 8:1332–1340

    Article  Google Scholar 

  43. Cole J, Hartley CJ (1977) The pulsed Doppler coronary artery catheter. Circulation 56(1):18–25

    Google Scholar 

  44. Wilson R, Laughlin DE, Ackell PH, Chilian WM, Holida MD, Hartley CJ, Armstrong ML, Marcus ML, White CW (1985) Transluminal, subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 72(1):82–92

    Google Scholar 

  45. Benchimol A, Segall HF, Gartlan JL, Ariz P (1971) New method to measure phasic coronary blood velocity in man. Am Heart J 81(1):91–101

    Article  Google Scholar 

  46. Kajiya F, Matsuoka S, Ogasawara Y, Hiramatsu O, Kanazawa S, Wada Y, Tadaoka S, Tsujioka K, Fujiwara T, Zamir M (1993) Velocity profiles and phasic flow patterns in the non-stenotic human left anterior descending coronary artery during cardiac surgery. Cardiovasc Res 27:845–850

    Article  Google Scholar 

  47. Walsh MT, Kavanagh EG, O'Brien T, Grace PA, McGloughlin T (2003) On the existence of an optimum end-to-side junctional geometry in peripheral bypass surgery – a computer generated study. Eur J Vasc Endovasc Surg 26(6):649–656

    Article  Google Scholar 

  48. O'Brien T, Walsh M, McGloughlin T (2005) On reducing abnormal hemodynamics in the femoral end-to-side anastomosis: the influence of mechanical factors. Ann Biomed Eng 33(3):310–322

    Article  Google Scholar 

  49. Morris L, Delassus P, Walsh M, McGloughlin T (2004) A mathematical model to predict the in vivo pulsatile drag forces acting on bifurcated stent grafts used in endovascular treatment of abdominal aortic aneurysms (AAA). J Biomech 37(7):1087–1095

    Article  Google Scholar 

  50. Walsh M, McGloughlin T, Liepsch DW, O’Brien T, Morris L, Ansari AR (2003) On using experimentally estimated wall shear stresses to validate numerically predicted results. Proc Inst Mech Eng H J Eng Med 217(H2):77–90

    Article  Google Scholar 

  51. Morris L, Delassus P, Grace P, Wallis F, Walsh M, McGloughlin T (2006) Effects of flat, parabolic and realistic steady flow inlet profiles on idealized and realistic stent graft fits through abdominal aortic aneurysms (AAA). Med Eng Phys 28(1):19–26

    Article  Google Scholar 

  52. O'Brien T, Morris L, Walsh M, McGloughlin T (2005) That hemodynamics and not material mismatch is of primary concern in bypass graft failure: an experimental argument. J Biomech Eng Trans ASME 127(5):881–886

    Article  Google Scholar 

  53. Fox B, Seed WA (1981) Location of early atheroma in the human coronary arteries. J Biomech Eng 3:208–212

    Article  Google Scholar 

  54. O’Keeffe LM, Muir G, Piterina AV, McGloughlin T (2009) Vascular cell adhesion molecule – 1 expression in endothelial cells exposed to physiological coronary wall shear stresses. J Biomech Eng 131(8):081003–081009

    Article  Google Scholar 

  55. O’Brien TP, Walsh MT, Morris L, Grace PA, Kavanagh EG, McGloughlin TM (2007) Numerical and experimental techniques for the study of biomechanics in the arterial system. In: Leondes CT (ed) Biomechanical systems technology, vol 4. World Scientific Hackensack, NJ, USA

    Google Scholar 

  56. Moore JE Jr, Ku DH, Zarins CK, Glagov S (1992) Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: implications for increased susceptibility to atherosclerosis. J Biomech Eng 114:391–353

    Google Scholar 

  57. Cheng CP, Parker D, Taylor CA (2002) Quantification of wall shear stress in large blood vessels using Lagrangian interpolation functions with cine phase-contrast magnetic resonance imaging. Ann Biomed Eng 30:1020–1032

    Article  Google Scholar 

  58. Cheng CP, Herfkens RJ, Taylor CA (2003) Abdominal aortic hemodynamic conditions in healthy subjects aged 50–70 at rest and during lower limb exercise: in vivo quantification using MRI. Atherosclerosis 168(2):323–331

    Article  Google Scholar 

  59. Pedersen EM, Sung HW, Yoganathan AP (1994) Influence of abdominal aortic curvature and resting versus exercise conditions on velocity fields in the normal abdominal aortic bifurcation. J Biomech Eng 166:347–353

    Article  Google Scholar 

  60. Moore JE Jr, Ku DH (1994a) Pulsatile velocity measurements in a model of the human abdominal aorta under simulated exercising and postprandial conditions. J Biomech Eng 116:107–111

    Article  Google Scholar 

  61. Moore JE Jr, Ku DH (1994b) Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions. J Biomech Eng 116:337–346

    Article  Google Scholar 

  62. Fung YC (1997) Biomechanics circulation, 2nd edn. Springer, New York, NY

    Google Scholar 

  63. Nerem RM, Rumberger M, Gross DR, Hamlin RL, Geiger GL (1974) Hot-film anemometry velocity measurements of arterial blood flow in horses. Circ Res 10:301–313

    Google Scholar 

  64. Falsetti H, Kiser KM, Francis GP, Belmore ER (1972) Sequential velocity development in the ascending and descending aorta of the dog. Circ Res 21:328–338

    Google Scholar 

  65. Seed WA, Wood NB (1971) Velocity patterns in the aorta. Cardiovasc Res 5:319–330

    Article  Google Scholar 

  66. Tortoli P, Bambi G, Guidi F, Muchada R (2002) Toward a better quantitative measurement of aortic flow. Ultrasound Med Biol 28(2):249–257

    Article  Google Scholar 

  67. Chandran KB (1993) Flow dynamics in the human aorta. J Biomech Eng 115:611–616

    Article  Google Scholar 

  68. Chandran KB, Yearwood TL (1981) Experimental study of physiological pulsatile flow in a curved tube. J Fluid Mech 111:59–85

    Article  Google Scholar 

  69. Yearwood TL, Chandran KB (1984) Physiological pulsatile flow experiments in a model of the human aortic arch. J Biomech 15(9):683–704

    Article  Google Scholar 

  70. O’Brien T, Morris L, O’Donnell M, Walsh M, McGloughlin T (2006) Injection-moulded models of major and minor arteries: the variability of model wall thickness owing to casting technique. Proc Inst Mech Eng H J Eng Med 219(H5):381–386

    Google Scholar 

  71. O’Brien T, Walsh M, Kavanagh EG, Finn SP, Grace PA, McGloughlin T (2006) The surgical feasibility of a novel vascular graft developed for the treatment of peripheral arterial disease using in vitro experimental design techniques. Ann Vasc Surg 21(5):611–617

    Article  Google Scholar 

  72. O'Brien T, Walsh M, McGloughlin T (2006) Altering end-to-side anastomosis junction hemodynamics: the effects of flow-splitting. Med Eng Phys 28(7):727–733

    Article  Google Scholar 

  73. Molony D, Callanan A, Morris L, Walsh M, McGloughlin T (2008) Geometrical enhancements for abdominal aortic aneurysm grafts and stent-grafts. J Endovasc Ther 15(5): 518–529

    Article  Google Scholar 

  74. Papaharilaou Y, Doorly DJ, Sherwin SJ (2002) The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis. J Biomech 35:1225–1239

    Article  Google Scholar 

  75. Pedersen EM, Sung HW, Yoganathan AP (1994) Influence of abdominal aortic curvature and resting versus exercise conditions on velocity fields in the normal abdominal aortic bifurcation. J Biomech Eng 166:347–353

    Article  Google Scholar 

  76. Naruse T, Tanishita K (1996) Large curvature effect on pulsatile entrance flow in a curved tube: model experiment simulating blood flow in an aortic arch. J Biomech Eng 118: 180–186

    Article  Google Scholar 

  77. Dean WR (1927) Note on the motion of fluid in a curved pipe. Philos Mag 20(7):208–223

    Google Scholar 

  78. Dean WR (1928) The streamline motion of fluid in a curved pipe. Philos Mag 30(7):673–693

    Google Scholar 

  79. Bluestein B, Niu L, Schoephoerster RT, Dewanjee MK (1996) Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. J Biomech Eng 118:280–286

    Article  Google Scholar 

  80. Egelhoff CJ, Budwig RS, Elger DF, Khraishi TA, Johansen KH (1999) Model studies of the flow in abdominal aortic aneurysms during resting and exercise conditions. J Biomech 32:1319–1329

    Article  Google Scholar 

  81. Shipkowitz T, Rodgers VGJ, Frazin JF, Chandran KB (2000) Numerical study on the effects of secondary flow in the human aorta on local shear stresses in abdominal branches. J Biomech 33:717–728

    Article  Google Scholar 

  82. Taylor CA, Hughes TJR, Zarins CK (1999) Effect of exercise on hemodynamic conditions in the abdominal aorta. J Vasc Surg 26(6):1070–1089

    Google Scholar 

  83. Walsh PW, Chin-Quee S, Moore JE Jr (2003) Med Eng Phys 25:299–307

    Article  Google Scholar 

  84. Melliere D, Cron J, Allaire E, Desgranges P, Becquemin JP (1999) Indications and benefits of simultaneous endoluminal balloon angioplasty and open surgery during elective lower limb revascularisation. Cardiovasc Surg 7(2):242–246

    Article  Google Scholar 

  85. Gallard RB, Magee TR, Berridge DC, Hopkinson GB, Lewis MH, Parvin SD (1999) Variation in vascular activity in the United Kingdom: an analysis of five regions. Cardiovasc Surg 7(7):694–698

    Article  Google Scholar 

  86. Streinchenberger R, Barjoud H, Adeleine P, Larese A, Nemoz C, Chatelard P, Nedey C, Sabben F, Ganichot F, Jurus C (2000) Venous allografts preserved at 4°C for infrainguinal bypass : long-term results from 170 procedures. Ann Vasc Surg 14(6):553–560

    Article  Google Scholar 

  87. Madiba TE et al (1997) Choosing the proximal anastomosis in aortobifemoral bypass. Br J Surg 84(10):1416–1418

    Article  Google Scholar 

  88. Lei M, Kleinstreuer C, Archie JP (1997) Hemodynamic simulations and computer-aided designs of graft–artery junctions. J Biomech Eng 119:343–348

    Article  Google Scholar 

  89. Strandness DE, Didisheim P Jr, Clowes AW, Watson JT (1987) Vascular diseases current research and applications. Grune & Stratton, Orlando

    Google Scholar 

  90. Giddens DP, Zarins CK, Glagov S (1993) The role of fluid mechanics in localisation and detection of atherosclerosis. J Biomech Eng 115:588–594

    Article  Google Scholar 

  91. Noori N, Scherera R, Perktoldb K, Czernya M, Karnerb G, Trubela M, Polterauera P, Schimaa H (1999) Blood flow in distal end-to-side anastomoses with PTFE and a venous patch: results of an in vitro flow visualisation study. Eur J Endovasc Surg 18:191–200

    Article  Google Scholar 

  92. Fei DY, Thomas JD, Rittgers SE (1994) The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: a numerical model. J Biomech Eng 116:331–336

    Article  Google Scholar 

  93. Taylor RS, Loh A, McFarland RJ, Cox M, Chester JF (1992) Improved technique for PTFE bypass grafting: long-term results using anastomotic vein patches. Br J Surg 79:348–354

    Article  Google Scholar 

  94. Eagleton MJ, Ouriel K, Shortell C, Green RM (1999) Femoral–infrapopliteal bypass with prosthetic grafts. Surgery 26(4):759–764

    Google Scholar 

  95. Fichelle JM, Marzelle J, Colacchio G, Gigou F, Cormier F, Cormier JM (1995) Infrapopliteal polytetrafluoroethylene and composite bypass: factors influencing patency. Ann Vasc Surg 9(2):187–196

    Article  Google Scholar 

  96. Chesire NJ, Wolfe JH (1992) How to select the treatment of choice of critical leg ischemia. Ann Chir Gynaecol 81(2):141–152

    Google Scholar 

  97. Kreienberg PB, Darling C, Chang BB, Paty PSK, Lloyd WE, Shah DM (2000) Adjunctive techniques to improve patency of distal prosthetic bypass grafts: polytetrafluoroethylene with remote arteriovenous fistulae versus vein cuffs. J Vasc Surg 31(4):696–701

    Article  Google Scholar 

  98. Bassiouny HS, White S, Glagov S, Choi E, Giddens DP, Zarins CK (1992) Anastomotic intimal hyperplasia: mechanical injury of flow induced. J Vasc Surg 15:708–717

    Article  Google Scholar 

  99. Staalsen NH, Ulrich M, Winther J, Pedersen EM, How T, Nygaard H (1995) The anastomosis angle does change the flow fields at vascular end-to-side anastomoses in-vivo. J Vasc Surg 21(3):460–471

    Article  Google Scholar 

  100. Kleinstreuer C, Lei M (1995) Hemodynamics of a femoral graft artery connector mitigating restenosis. Adv Bioeng BED 31:171–172

    Google Scholar 

  101. Friedman MH (1983) Arterial geometry affects hemodynamics. Atherosclerosis 46:225–231

    Article  Google Scholar 

  102. Xiao Y, Truskey GA (1997) Effect of flow recirculation upon endothelial cell height and shape. Bioeng Conf BED 35:537–538

    Google Scholar 

  103. White SS, Zarins CK, Giddens DP (1993) Hemodynamics patterns in two models of end-to-side vascular graft anastomoses: effects of pulsatility, flow division, Re. No. and hood length. J Biomech Eng 15:104–111

    Article  Google Scholar 

  104. Kleinstreuer C, Lei M, Archie JP (1996) Flow input waveform effects on the temporal and spatial wall shear stress gradients in a femoral graft–artery connector. J Biomech Eng 118:506–510

    Article  Google Scholar 

  105. Ojha M, Ethier CR, Johnston KW, Cobbold RS (1990) Steady and pulsatile flow field in an end-to-side arterial anastomosis model. J Vasc Surg 12(6):747–753

    Article  Google Scholar 

  106. Ojha M, Cobbold RS, Johnston KW (1994) Influence of angle on wall shear stress distribution for an end-to-side anastomosis. J Vasc Surg 19(6):1067–1073

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the following former and current members of the CABER team for their contribution to the research described above: Dr. Thomas O’Brien, Dr. Liam Morris, Dr. Siobhan O’Callaghan, Dr. Paul Devereux, Dr. Lucy O'Keeffe, and Dr. Grainne Carroll, and special thanks to William Denny and Stephen Broderick for assistance on preparation of graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim McGloughlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McGloughlin, T., Walsh, M.T. (2010). Arterial Circulation and Disease Processes. In: Chandran, K., Udaykumar, H., Reinhardt, J. (eds) Image-Based Computational Modeling of the Human Circulatory and Pulmonary Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7350-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7350-4_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7349-8

  • Online ISBN: 978-1-4419-7350-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics