Native Human and Bioprosthetic Heart Valve Dynamics

Chapter

Abstract

Native human heart valves undergo complex deformation during a cardiac cycle and the tissue leaflets are subjected to regions of stress concentrations particularly during the opening and closing phases. Diseases of the heart valves include stenosis and valvular incompetence and the valves in the left heart (aortic and mitral valves) subjected to higher pressure loads are more prone to these diseases. A correlation has been established between regions of high stress concentration on the leaflets and regions of calcification and tissue failure. Computational simulations play a significant role in the determination of stress distribution on the leaflets during a cardiac cycle. In this chapter, the development of state-of-the-art structural analysis of the biological leaflet valves as well as fluid–structure interaction algorithms for the analysis of biological tissue valve dynamics are described. The potential application of the computational analyses on improving the design of biological heart valve prostheses is discussed. The need for further advancements in multiscale simulation for increasing our understanding of the effect of mechanical stresses on the leaflet microstructure is also pointed out.

Keywords

Vortex Formaldehyde Dioxide Anisotropy Attenuation 

References

  1. 1.
    Chandran KB, Rittgers SE, Yoganathan AP (2007) Biofluid mechanics: the human circulation. CRC/Taylor & Francis, Boca Raton, FLGoogle Scholar
  2. 2.
    Sacks MS, Yoganathan AP (2007) Heart valve function: a biomechanical perspective. Philos Trans R Soc Lond B Biol Sci 362(1484):1369–1391Google Scholar
  3. 3.
    Yoganathan AP, Lemmon JD, Ellis JT (2000) Heart valve dynamics. In: Bronzino JD (ed) The biomedical engineering handbook. CRC Press and IEEE Press, Boca Raton, FL, pp 29.21–29.15Google Scholar
  4. 4.
    Thubrikar M (1990) The aortic valve. CRC Press, Boca Raton, FLGoogle Scholar
  5. 5.
    Billiar KL, Sacks MS (2000) Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp – part I: experimental results. J Biomech Eng 122(1):23–30Google Scholar
  6. 6.
    Sacks MS (1999) A method for planar biaxial mechanical testing that includes in-plane shear. J Biomech Eng 121(5):551–555Google Scholar
  7. 7.
    Sacks MS, Sun W (2003) Multiaxial mechanical behavior of biological materials. Annu Rev Biomed Eng 5:251–284Google Scholar
  8. 8.
    Sun W, Sacks MS, Sellaro TL, Slaughter WS, Scott MJ (2003) Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear. J Biomech Eng 125(3): 372–380Google Scholar
  9. 9.
    Engelmayr GC, Hildebrand DK, Sutherland FW, Mayer JE, Sacks MS (2003) A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials 24(14):2523–2532Google Scholar
  10. 10.
    Mirnajafi A, Raymer J, Scott MJ, Sacks MS (2005) The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials. J. Biomech Eng 26: 795–804Google Scholar
  11. 11.
    Chandran KB (2006) Heart valve prostheses. In: Webster JG (ed) Encyclopedia of medical devices and instrumentation. Wiley, New York, NY, pp 407–426Google Scholar
  12. 12.
    Thubrikar M, Piepgrass WC, Shaner TW, Nolan SP (1981) The design of the normal aortic valve. Am J Physiol 241(6):H795–H801Google Scholar
  13. 13.
    Seed WA, Wood NB (1971) Velocity patterns in the aorta. Cardiovasc Res 5(3):319–330Google Scholar
  14. 14.
    Bellhouse BJ, Bellhouse FH (1968) Mechanism of closure of the aortic valve. Nature 217(123):86–87Google Scholar
  15. 15.
    Ho SY (2002) Anatomy of the mitral valve. Heart 88(Suppl. iv):iv5–iv10Google Scholar
  16. 16.
    Barlow JB, Antunes MJ (1987) Functional anatomy of the mitral valve, perspectives on the mitral valve. F. A. Davis Company, Philadelphia, PA, pp 1–14Google Scholar
  17. 17.
    Reul H, Talukder N, Muller EW (1981) Fluid mechanics of the natural mitral valve. J Biomech 14(5):361–372Google Scholar
  18. 18.
    Barlow JB, Lakier JB, Pocock WA (1987) Mitral stenosis, perspectives on the mitral valve. F.A. Davis Company, Philadelphia, PAGoogle Scholar
  19. 19.
    Lewin MB, Otto CM (2005) The bicuspid aortic valve: adverse outcomes from infancy to old age. Circulation 111:832–834Google Scholar
  20. 20.
    Roberts WC, Ko JM (2005) Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis with or without aortic insufficiency. Circulation 111:920–925Google Scholar
  21. 21.
    Roberts WC, Ko JM, Moore TR, Jones III WH (2006) Causes of pure aortic regurgitation in patients having isolated aortic valve replacement at a single US Tertiary Hospital (1993–2005). Circulation 114:422–429Google Scholar
  22. 22.
    Aazami M, Schafers HJ (2003) Advances in heart valve surgery. J Interv Cardiol 16(6): 535–541Google Scholar
  23. 23.
    Yoganathan AP (2000) Cardiac valve prostheses. In: Bronzino JD (ed) Biomedical engineering handbook. CRC Press and IEEE Press, Boca Raton, FL, pp 127.121–127.123Google Scholar
  24. 24.
    Stein PD (1971) Roentgenographic method for measurement of the cross-sectional area of the aortic valve. Am Heart J 81(5):622–634Google Scholar
  25. 25.
    Thubrikar M, Carabello BA, Aouad J, Nolan SP (1982) Interpretation of aortic root angiography in dogs and in humans. Cardiovasc Res 16(1):16–21Google Scholar
  26. 26.
    Van Steenhoven AA, Verlaan CW, Veenstra PC, Reneman RS (1981) In vivo cinematographic analysis of behavior of the aortic valve. Am J Physiol 240(2):H286–H292Google Scholar
  27. 27.
    Green GR, Dagum P, Glasson JR, Daughters GT, Bolger AF, Foppiano LE, Berry GJ, Ingels NB Jr, Miller DC (1999) Mitral annular dilatation and papillary muscle dislocation without mitral regurgitation in sheep. Circulation, 100(19 Suppl):II95–II102Google Scholar
  28. 28.
    Thubrikar MJ, Deck JD, Aouad J, Nolan SP (1983) Role of mechanical stress in calcification of aortic bioprosthetic valves. J Thorac Cardiovasc Surg 86(1):115–125Google Scholar
  29. 29.
    Tibayan FA, Rodriguez F, Zasio MK, Bailey L, Liang D, Daughters GT, Langer F, Ingels NB Jr, Miller DC (2003) Geometric distortions of the mitral valvular-ventricular complex in chronic ischemic mitral regurgitation. Circulation 108(Suppl 1):II116–II121Google Scholar
  30. 30.
    Gorman JH 3rd, Gupta KB, Streicher JT, Gorman RC, Jackson BM, Ratcliffe MB, Bogen DK, Edmunds LH Jr (1996) Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J Thorac Cardiovasc Surg 112(3): 712–726Google Scholar
  31. 31.
    Saito S, Araki Y, Usui A, Akita T, Oshima H, Yokote J, Ueda Y (2006) Mitral valve motion assessed by high-speed video camera in isolated swine heart. Eur J Cardiothorac Surg 30(4):584–591Google Scholar
  32. 32.
    Otsuji Y, Handschumacher MD, Kisanuki A, Tei C, Levine RA (1998) Functional mitral regurgitation. Cardiologia 43(10):1011–1016Google Scholar
  33. 33.
    Patel AR, Mochizuki Y, Yao J, Pandian NG (2000) Mitral regurgitation: comprehensive assessment by echocardiography. Echocardiography 17(3):275–283Google Scholar
  34. 34.
    Flachskampf FA, Chandra S, Gaddipatti A, Levine RA, Weyman AE, Ameling W, Hanrath P, Thomas JD (2000) Analysis of shape and motion of the mitral annulus in subjects with and without cardiomyopathy by echocardiographic 3-dimensional reconstruction. J Am Soc Echocardiogr 13:277–287Google Scholar
  35. 35.
    Kaplan SR, Bashein G, Sheehan FH, Legget ME, Munt B, Li XN, Sivarajan M, Bolson EL, Zeppa M, Arch MZ, Martin RW (2000) Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am Heart J 139(3): 378–387Google Scholar
  36. 36.
    Otsuji Y, Handschumacher MD, Schwammenthal E, Jiang L, Song JK, Guerrero JL, Vlahakes GJ, Levine RA (1997) Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: direct in vivo demonstration of altered leaflet tethering geometry. Circulation 96(6):1999–2008Google Scholar
  37. 37.
    Ryan LP, Jackson BM, Eperjesi TJ, Plappert TJ, St John-Sutton M, Gorman RC, Gorman JH 3rd (2008) A methodology for assessing human mitral leaflet curvature using real-time 3-dimensional echocardiography. J Thorac Cardiovasc Surg 136(3):726–734Google Scholar
  38. 38.
    Ryan LP, Jackson BM, Hamamoto H, Eperjesi TJ, Plappert TJ, St John-Sutton M, Gorman RC, Gorman JH 3rd (2008) The influence of annuloplasty ring geometry on mitral leaflet curvature. Ann Thorac Surg 86(3):749–760; discussion 749–760Google Scholar
  39. 39.
    Salgo IS, Gorman JH 3rd, Gorman RC, Jackson BM, Bowen FW, Plappert T, St John Sutton MG, Edmunds LH Jr (2002) Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106(6):711–717Google Scholar
  40. 40.
    Adamczyk MM, Vesely I (2002) Characteristics of compressive strains in porcine aortic valves cusps. J Heart Valve Dis 11(1):75–83Google Scholar
  41. 41.
    Iyengar AKS, Sugimoto H, Smith DB, Sacks MS (2001) Dynamic in vitro quantification of bioprosthetic heart valve leaflet motion using structured light projection. Ann Biomed Eng 29(11):963–973Google Scholar
  42. 42.
    He Z, Ritchie J, Grashow JS, Sacks MS, Yoganathan AP (2005) In vitro dynamic strain behavior of the mitral valve posterior leaflet. J Biomech Eng 127(3):504–511Google Scholar
  43. 43.
    He Z, Sacks MS, Baijens L, Wanant S, Shah P, Yoganathan AP (2003) Effects of papillary muscle position on in-vitro dynamic strain on the porcine mitral valve. J Heart Valve Dis 12(4):488–494Google Scholar
  44. 44.
    Jimenez JH, Soerensen DD, He Z, He S, Yoganathan AP (2003) Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann Biomed Eng 31(10):1171–1181Google Scholar
  45. 45.
    Correale M, Ieva R, Di Biase M (2008) Real-time three-dimensional echocardiography: an update. Eur J Intern Med 19(4):241–248Google Scholar
  46. 46.
    Hung J, Lang R, Flachskampf F, Shernan SK, McCulloch ML, Adams DB, Thomas J, Vannan M, Ryan T (2007) 3D echocardiography: a review of the current status and future directions. J Am Soc Echocardiogr 20(3):213–233Google Scholar
  47. 47.
    Ahmed S, Nanda NC, Miller AP, Nekkanti R, Yousif AM, Pacifico AD, Kirklin JK, McGiffin DC (2003) Usefulness of transesophageal three-dimensional echocardiography in the identification of individual segment/scallop prolapse of the mitral valve. Echocardiography 20(2):203–209Google Scholar
  48. 48.
    Schwalm SA, Sugeng L, Raman J, Jeevanandum V, Lang RM (2004) Assessment of mitral valve leaflet perforation as a result of infective endocarditis by 3-dimensional real-time echocardiography. J Am Soc Echocardiogr 17(8):919–922Google Scholar
  49. 49.
    Binder TM, Rosenhek R, Porenta G, Maurer G, Baumgartner H (2000) Improved assessment of mitral valve stenosis by volumetric real-time three-dimensional echocardiography. J Am Coll Cardiol 36(4):1355–1361Google Scholar
  50. 50.
    Xie MX, Wang XF, Cheng TO, Wang J, Lu Q (2005) Comparison of accuracy of mitral valve area in mitral stenosis by real-time, three-dimensional echocardiography versus two-dimensional echocardiography versus Doppler pressure half-time. Am J Cardiol 95(12):1496–1499Google Scholar
  51. 51.
    Zamorano J, Cordeiro P, Sugeng L, Perez de Isla L, Weinert L, Macaya C, Rodriguez E, Lang RM (2004) Real-time three-dimensional echocardiography for rheumatic mitral valve stenosis evaluation: an accurate and novel approach. J Am Coll Cardiol 43(11):2091–2096Google Scholar
  52. 52.
    Ryan LP, Jackson BM, Enomoto Y, Parish L, Plappert TJ, St John-Sutton MG, Gorman RC, Gorman JH 3rd (2007) Description of regional mitral annular nonplanarity in healthy human subjects: a novel methodology. J Thorac Cardiovasc Surg 134(3):644–648Google Scholar
  53. 53.
    Chaput M, Handschumacher MD, Tournoux F, Hua L, Guerrero JL, Vlahakes GJ, Levine RA (2008) Mitral leaflet adaptation to ventricular remodeling: occurrence and adequacy in patients with functional mitral regurgitation. Circulation 118(8):845–852Google Scholar
  54. 54.
    Verhey JF, Nathan NS, Rienhoff O, Kikinis R, Rakebrandt F, D’Ambra MN (2006) Finite-element-method (FEM) model generation of time-resolved 3D echocardiographic geometry data for mitral-valve volumetry. Biomed Eng Online 5:17Google Scholar
  55. 55.
    Flamm SD (2007) Cross-sectional imaging studies: what can we learn and what do we need to know? Semin Vasc Surg 20(2):108–114Google Scholar
  56. 56.
    Woodard PK, Bhalla S, Javidan-Nejad C, Gutierrez FR (2006) Non-coronary cardiac CT imaging. Semin Ultrasound CT MR 27(1):56–75Google Scholar
  57. 57.
    Morgan-Hughes GJ, Owens PE, Roobottom CA, Marshall AJ (2003) Three dimensional volume quantification of aortic valve calcification using multislice computed tomography. Heart 89(10):1191–1194Google Scholar
  58. 58.
    Boughner DR, Thornton M, Dunmore-Buyze J, Holdsworth DW (2000) The radiographic quantitation of aortic valve calcification: implications for assessing bioprosthetic valve calcification in vitro. Physiol Meas 21(3):409–416Google Scholar
  59. 59.
    Vogel-Claussen J, Pannu H, Spevak PJ, Fishman EK, Bluemke DA (2006) Cardiac valve assessment with MR imaging and 64-section multi-detector row CT. Radiographics 26(6):1769–1784Google Scholar
  60. 60.
    Dowsey AW, Keegan J, Lerotic M, Thom S, Firmin D, Yang GZ (2007) Motion-compensated MR valve imaging with COMB tag tracking and super-resolution enhancement. Med Image Anal 11(5):478–491Google Scholar
  61. 61.
    Kaji S, Nasu M, Yamamuro A, Tanabe K, Nagai K, Tani T, Tamita K, Shiratori K, Kinoshita M, Senda M, Okada Y, Morioka S (2005) Annular geometry in patients with chronic ischemic mitral regurgitation: three-dimensional magnetic resonance imaging study. Circulation 112(9 Suppl):I409–I414Google Scholar
  62. 62.
    Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell C, Roger V, Sorlie P, Steinberger J, Thom T, Wilson M, Hong Y (2008) Heart disease and stroke statistics–2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117(4):e25–e146Google Scholar
  63. 63.
    Otto CM (2004) Valvular heart disease. Saunders, Philadelphia, PAGoogle Scholar
  64. 64.
    Schoen FJ (2008) Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation 118(18): 1864–1880Google Scholar
  65. 65.
    Aupart MR, Babuty DG, Guesnier L, Meurisse YA, Sirinelli AL, Marchand MA (1996) Double valve replacement with the Carpentier-Edwards pericardial valve: 10-year results. J Heart Valve Dis 5(3):312–316Google Scholar
  66. 66.
    Sacks MS (2001) The biomechanical effects of fatigue on the porcine bioprosthetic heart valve. J Long Term Eff Med Implants 11(3–4):231–247Google Scholar
  67. 67.
    Sacks MS, Schoen FJ (2002) Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J Biomed Mater Res 62(3):359–371Google Scholar
  68. 68.
    Gnyaneshwar R, Kumar RK, Balakrishnan KR (2002) Dynamic analysis of the aortic valve using a finite element model. Ann Thorac Surg 73(4):1122–1129Google Scholar
  69. 69.
    Howard IC, Patterson EA, Yoxall A (2003) On the opening mechanism of the aortic valve: some observations from simulations. J Med Eng Technol 27(6):259–266Google Scholar
  70. 70.
    Ranga A, Mongrain R, Mendes Galaz R, Biadillah Y, Cartier R (2004) Large-displacement 3D structural analysis of an aortic valve model with nonlinear material properties. J Med Eng Technol 28(3):95–103; discussion 104Google Scholar
  71. 71.
    Sripathi VC, Kumar RK, Balakrishnan KR (2004) Further insights into normal aortic valve function: role of a compliant aortic root on leaflet opening and valve orifice area. Ann Thorac Surg 77(3):844–851Google Scholar
  72. 72.
    Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS (1998) Stress variations in the human aortic root and valve: the role of anatomic asymmetry. Ann Biomed Eng 26(4):534–545Google Scholar
  73. 73.
    Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS (1999) Mechanisms of aortic valve incompetence in aging: a finite element model. J Heart Valve Dis 8(2):149–156Google Scholar
  74. 74.
    Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS (2000) Mechanisms of aortic valve incompetence: finite element modeling of aortic root dilatation. Ann Thorac Surg 69(6):1851–1857Google Scholar
  75. 75.
    Grande-Allen KJ, Cochran RP, Reinhall PG, Kunzelman KS (2001) Mechanisms of aortic valve incompetence: finite-element modeling of Marfan syndrome. J Thorac Cardiovasc Surg 122(5):946–954Google Scholar
  76. 76.
    Haj-Ali R, Dasi LP, Kim HS, Choi J, Leo HW, Yoganathan AP (2008) Structural simulations of prosthetic tri-leaflet aortic heart valves. J Biomech 41(7):1510–1519Google Scholar
  77. 77.
    Robicsek F, Thubrikar MJ, Cook JW, Fowler B (2004) The congenitally bicuspid aortic valve: how does it function? Why does it fail? Ann Thorac Surg 77(1):177–185Google Scholar
  78. 78.
    Sacks MS, He Z, Baijens L, Wanant S, Shah P, Sugimoto H, Yoganathan AP (2002) Surface strains in the anterior leaflet of the functioning mitral valve. Ann Biomed Eng 30(10): 1281–1290Google Scholar
  79. 79.
    Driessen NJ, Boerboom RA, Huyghe JM, Bouten CV, Baaijens FP (2003) Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J Biomech Eng 125(4):549–557Google Scholar
  80. 80.
    Driessen NJ, Bouten CV, Baaijens FP (2005) Improved prediction of the collagen fiber architecture in the aortic heart valve. J Biomech Eng 127(2):329–336Google Scholar
  81. 81.
    Driessen NJ, Bouten CV, Baaijens FP (2005) A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution. J Biomech Eng 127(3):494–503Google Scholar
  82. 82.
    Acar C, Farge A, Ramsheyi A, Chachques JC, Mihaileanu S, Gouezo R, Gerota J, Carpentier AF (1994) Mitral valve replacement using a cryopreserved mitral homograft. Ann Thorac Surg 57(3):746–748Google Scholar
  83. 83.
    Gillinov AM, Cosgrove DM, Blackstone EH, Diaz R, Arnold JH, Lytle BW, Smedira NG, Sabik JF, McCarthy PM, Loop FD (1998) Durability of mitral valve repair for degenerative disease. J Thorac Cardiovasc Surg 116(5):734–743Google Scholar
  84. 84.
    David TE, Ivanov J, Armstrong S, Rakowski H (2003) Late outcomes of mitral valve repair for floppy valves: implications for asymptomatic patients. J Thorac Cardiovasc Surg 125(5):1143–1152Google Scholar
  85. 85.
    Hayek E, Gring CN, Griffin BP (2005) Mitral valve prolapse. Lancet 365(9458):507–518Google Scholar
  86. 86.
    Kay GL, Aoki A, Zubiate P, Prejean CA Jr, Ruggio JM, Kay JH (1994) Probability of valve repair for pure mitral regurgitation. J Thorac Cardiovasc Surg 108(5):871–879Google Scholar
  87. 87.
    Braunberger E, Deloche A, Berrebi A, Abdallah F, Celestin JA, Meimoun P, Chatellier G, Chauvaud S, Fabiani JN, Carpentier A (2001) Very long-term results (more than 20 years) of valve repair with Carpentier’s techniques in nonrheumatic mitral valve insufficiency. Circulation 104(12 Suppl 1):I8–I11Google Scholar
  88. 88.
    Lawrie GM (1998) Mitral valve repair vs replacement. Current recommendations and long-term results. Cardiol Clin 16(3):437–448Google Scholar
  89. 89.
    Lawrie GM (2006) Mitral valve: toward complete repairability. Surg Technol Int 15:189–197Google Scholar
  90. 90.
    Kunzelman KS, Cochran RP, Chuong C, Ring WS, Verrier ED, Eberhart RD (1993) Finite element analysis of the mitral valve. J Heart Valve Dis 2(3):326–340Google Scholar
  91. 91.
    Kunzelman KS, Quick DW, Cochran RP (1998) Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis. Ann Thorac Surg 66(6 Suppl):S198–S205Google Scholar
  92. 92.
    Kunzelman KS, Reimink MS, Cochran RP (1997) Annular dilatation increases stress in the mitral valve and delays coaptation: a finite element computer model. Cardiovasc Surg 5(4):427–434Google Scholar
  93. 93.
    Kunzelman KS, Reimink MS, Cochran RP (1998) Flexible versus rigid ring annuloplasty for mitral valve annular dilatation: a finite element model. J Heart Valve Dis 7(1): 108–116Google Scholar
  94. 94.
    Lim KH, Yeo JH, Duran CM (2005) Three-dimensional asymmetrical modeling of the mitral valve: a finite element study with dynamic boundaries. J Heart Valve Dis 14(3):386–392Google Scholar
  95. 95.
    Grashow JS, Sacks MS, Liao J, Yoganathan AP (2006) Planar biaxial creep and stress relaxation of the mitral valve anterior leaflet. Ann Biomed Eng 34(10):1509–1518Google Scholar
  96. 96.
    Grashow JS, Yoganathan AP, Sacks MS (2006) Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann Biomed Eng 34(2):315–325Google Scholar
  97. 97.
    May-Newman K, Yin FC (1995) Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am J Physiol 269(4 Pt 2):H1319–H1327Google Scholar
  98. 98.
    May-Newman K, Yin FC (1998) A constitutive law for mitral valve tissue. J Biomech Eng 120(1):38–47Google Scholar
  99. 99.
    Ritchie J, Jimenez J, He Z, Sacks MS, Yoganathan AP (2006) The material properties of the native porcine mitral valve chordae tendineae: an in vitro investigation. J Biomech 39(6):1129–1135Google Scholar
  100. 100.
    He S, Weston MW, Lemmon J, Jensen M, Levine RA, Yoganathan AP (2000) Geometric distribution of chordae tendineae: an important anatomic feature in mitral valve function. J Heart Valve Dis 9(4):495–501; discussion 502–493Google Scholar
  101. 101.
    Maisano F, Redaelli A, Soncini M, Votta E, Arcobasso L, Alfieri O (2005) An annular prosthesis for the treatment of functional mitral regurgitation: finite element model analysis of a dog bone-shaped ring prosthesis. Ann Thorac Surg 79(4):1268–1275Google Scholar
  102. 102.
    Votta E, Maisano F, Bolling SF, Alfieri O, Montevecchi FM, Redaelli A (2007) The Geoform disease-specific annuloplasty system: a finite element study. Ann Thorac Surg 84(1):92–101Google Scholar
  103. 103.
    Alfieri O, Maisano F, De Bonis M, Stefano PL, Torracca L, Oppizzi M, La Canna G (2001) The double-orifice technique in mitral valve repair: a simple solution for complex problems. J Thorac Cardiovasc Surg 122(4):674–681Google Scholar
  104. 104.
    Dal Pan F, Donzella G, Fucci C, Schreiber M (2005) Structural effects of an innovative surgical technique to repair heart valve defects. J Biomech 38(12):2460–2471Google Scholar
  105. 105.
    Votta E, Maisano F, Soncini M, Redaelli A, Montevecchi FM, Alfieri O (2002) 3-D computational analysis of the stress distribution on the leaflets after edge-to-edge repair of mitral regurgitation. J Heart Valve Dis 11(6):810–822Google Scholar
  106. 106.
    Avanzini A (2008) A computational procedure for prediction of structural effects of edge-to-edge repair on mitral valve. J Biomech Eng 130(3):031015Google Scholar
  107. 107.
    El Oakley R, Kleine P, Bach DS (2008) Choice of prosthetic heart valve in today’s practice. Circulation 117(2):253–256Google Scholar
  108. 108.
    Bach DS (2003) Choice of prosthetic heart valves: update for the next generation. J Am Coll Cardiol 42(10):1717–1719Google Scholar
  109. 109.
    Schoen FJ, Levy RJ (2005) Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg 79(3):1072–1080Google Scholar
  110. 110.
    Stock UA, Vacanti JP, Mayer JE, Wahlers T (2002) Tissue engineering of heart valves – current aspects. Thorac Cardiovasc Surg 50(3):184–193Google Scholar
  111. 111.
    Vyavahare NR, Hirsch D, Lerner E, Baskin JZ, Zand R, Schoen FJ, Levy RJ (1998) Prevention of calcification of glutaraldehyde-crosslinked porcine aortic cusps by ethanol preincubation: mechanistic studies of protein structure and water-biomaterial relationships. J Biomed Mater Res 40(4):577–585Google Scholar
  112. 112.
    Vesely I, Barber JE, Ratliff NB (2001) Tissue damage and calcification may be independent mechanisms of bioprosthetic heart valve failure. J Heart Valve Dis 10(4):471–477Google Scholar
  113. 113.
    Schoen FJ (1998) Pathologic findings in explanted clinical bioprosthetic valves fabricated from photooxidized bovine pericardium. J Heart Valve Dis 7(2):174–179MathSciNetGoogle Scholar
  114. 114.
    Schoen FJ, Levy RJ (1994) Pathology of substitute heart valves: new concepts and developments. J Card Surg 9(2 Suppl):222–227Google Scholar
  115. 115.
    Chandran KB, Kim SH, Han G (1991) Stress distribution on the cusps of a polyurethane trileaflet heart valve prosthesis in the closed position. J Biomech 24(6):385–395Google Scholar
  116. 116.
    Hamid MS, Sabbah HN, Stein PD (1986) Influence of stent height upon stresses on the cusps of closed bioprosthetic valves. J Biomech 19(9):759–769Google Scholar
  117. 117.
    Rousseau EP, van Steenhoven AA, Janssen JD (1988) A mechanical analysis of the closed Hancock heart valve prosthesis. J Biomech 21(7):545–562Google Scholar
  118. 118.
    Black MM, Howard IC, Huang X, Patterson EA (1991) A three-dimensional analysis of a bioprosthetic heart valve. J Biomech 24(9):793–801Google Scholar
  119. 119.
    Krucinski S, Vesely I, Dokainish MA, Campbell G (1993) Numerical simulation of leaflet flexure in bioprosthetic valves mounted on rigid and expansile stents. J Biomech 26(8): 929–943Google Scholar
  120. 120.
    Patterson EA, Howard IC, Thornton MA (1996) A comparative study of linear and nonlinear simulations of the leaflets in a bioprosthetic heart valve during the cardiac cycle. J Med Eng Technol 20(3):95–108Google Scholar
  121. 121.
    Kim H, Chandran KB, Sacks MS, Lu J (2007) An experimentally derived stress resultant shell model for heart valve dynamic simulations. Ann Biomed Eng 35(1):30–44Google Scholar
  122. 122.
    Kim H, Lu J, Sacks MS, Chandran KB (2006) Dynamic simulation pericardial bioprosthetic heart valve function. J Biomech Eng 128(5):717–724Google Scholar
  123. 123.
    Kim H, Lu J, Sacks MS, Chandran KB (2008) Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann Biomed Eng 36(2):262–275Google Scholar
  124. 124.
    Li J, Luo XY, Kuang ZB (2001) A nonlinear anisotropic model for porcine aortic heart valves. J Biomech 34(10):1279–1289Google Scholar
  125. 125.
    Sun W, Abad A, Sacks MS (2005) Simulated bioprosthetic heart valve deformation under quasi-static loading. J Biomech Eng-T Asme 127(6):905–914Google Scholar
  126. 126.
    Burriesci G, Howard IC, Patterson EA (1999) Influence of anisotropy on the mechanical behaviour of bioprosthetic heart valves. J Med Eng Technol 23(6):203–215Google Scholar
  127. 127.
    Huang X, Black MM, Howard IC, Patterson EA (1990) A two-dimensional finite element analysis of a bioprosthetic heart valve. J Biomech 23(8):753–762Google Scholar
  128. 128.
    Peskin CS (1982) The fluid-dynamics of heart-valves – experimental, theoretical, and computational methods. Annu Rev Fluid Mech 14:235–259MathSciNetGoogle Scholar
  129. 129.
    Peskin CS (2002) The immersed boundary method. Acta Numerica 11:479–517MATHMathSciNetGoogle Scholar
  130. 130.
    Peskin CS, Mcqueen DM (1989) A 3-dimensional computational method for blood-flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid. J Comput Phys 81(2):372–405MATHMathSciNetGoogle Scholar
  131. 131.
    Peskin, CS, Printz BF (1993) Improved volume conservation in the computation of flows with immersed elastic boundaries. J Comput Phys 105:33–46MATHMathSciNetGoogle Scholar
  132. 132.
    De Hart J, Peters GW, Schreurs PJ, Baaijens FP (2000) A two-dimensional fluid-structure interaction model of the aortic valve. J Biomech 33(9):1079–1088Google Scholar
  133. 133.
    De Hart J, Baaijens FP, Peters GW, Schreurs PJ (2003) A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech 36(5):699–712Google Scholar
  134. 134.
    De Hart J, Peters GW, Schreurs PJ, Baaijens FP (2003) A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J Biomech 36(1):103–112Google Scholar
  135. 135.
    Vigmostad S (2007) A sharp interface fluid-structure interaction for bioprosthetic heart valves. Ph.D. Dissertation, The University of Iowa, Iowa City, IAGoogle Scholar
  136. 136.
    Dumont K, Stijnen JM, Vierendeels J, van de Vosse FN, Verdonck PR (2004) Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in fluent. Comput Methods Biomech Biomed Eng 7(3):139–146Google Scholar
  137. 137.
    Makhijani VB, Yang HQ, Dionne PJ, Thubrikar MJ (1997) Three-dimensional coupled fluid-structure simulation of pericardial bioprosthetic aortic valve function. Asaio J 43(5):M387–M392Google Scholar
  138. 138.
    Kunzelman KS, Einstein DR, Cochran RP (2007) Fluid-structure interaction models of the mitral valve: function in normal and pathological states. Philos Trans R Soc Lond B Biol Sci 362(1484):1393–1406Google Scholar
  139. 139.
    Carmody CJ, Burriesci G, Howard IC, Patterson EA (2006) An approach to the simulation of fluid-structure interaction in the aortic valve. J Biomech 39(1):158–169Google Scholar
  140. 140.
    Nicosia MA, Cochran RP, Einstein DR, Rutland CJ, Kunzelman KS (2003) A coupled fluid-structure finite element model of the aortic valve and root. J Heart Valve Dis 12(6):781–789Google Scholar
  141. 141.
    Weinberg EJ, Kaazempur Mofrad MR (2007) Transient, three-dimensional, multiscale simulations of the human aortic valve. Cardiovasc Eng (Dordrecht, Netherlands) 7(4):140–155Google Scholar
  142. 142.
    Krishnan S, Udaykumar HS, Marshall JS, Chandran KB (2006) Two-dimensional dynamic simulation of platelet activation during mechanical heart valve closure. Ann Biomed Eng 34(10):1519–1534Google Scholar
  143. 143.
    Govindarajan V, Udaykumar HS, Chandran KB (2009) Two-dimensional simulation of flow and platelet dynamics in the hinge region of a mechanical heart valve. J Biomech Eng 131:031002–1Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Division of Cardiology, Department of Internal MedicineThe University of Texas Health Science Center at HoustonHoustonUSA
  2. 2.Department of Mechanical and Industrial EngineeringThe University of Iowa, 2137 Seamans CenterIowa CityUSA
  3. 3.Department of Biomedical EngineeringCollege of Engineering, 1138 Seamans Center, The University of IowaIowa CityUSA

Personalised recommendations