Skip to main content

Plant Phenolics in the Prevention and Treatment of Cancer

  • Chapter
Bio-Farms for Nutraceuticals

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 698))

Abstract

Epidemiological studies indicate that populations consuming high levels of plant derived foods have low incidence rates of various cancers. Recent findings implicate a variety of phytochemicals, including phenolics, in these anticancer properties. Both monophenolic and polyphenolic compounds from a large variety of plant foods, spices and beverages have been shown to inhibit or attenuate the initiation, progression and spread of cancers in cells in vitro and in animals in vivo. The cellular mechanisms that phenolics modulate to elicit these anticancer effects are multi-faceted and include regulation of growth factor-receptor interactions and cell signaling cascades, including kinases and transcription factors, that determine the expression of genes involved in cell cycle arrest, cell survival and apoptosis or programmed cell death. A major focus has been the inhibitory effects of phenolics on the stress-activated NF-κB and AP-1 signal cascades in cancer cells which are regarded as major therapeutic targets. Phenolics can enhance the body’s immune system to recognize and destroy cancer cells as well as inhibiting the development of new blood vessels (angiogenesis) that is necessary for tumour growth. They also attenuate adhesiveness and invasiveness of cancer cells thereby reducing their metastatic potential.

Augmentation of the efficacy of standard chemo- and radiotherapeutic treatment regimes and the prevention of resistance to these agents is another important effect of plant phenolics that warrants further research.

Plant phenolics appear to have both preventative and treatment potential in combating cancer and warrant further, in-depth research. It is interesting that these effects of plant phenolics on cancer inhibition resemble effects reported for specific fatty acids (omega-3 PUFA, conjugated linoleic acids).

Although phenolic effects in cells in vitro and in animal models are generally positive, observations from the less numerous human interventions are less clear. This is surprising given the positive epidemiological data and may relate to mixed diets and synergistic interactions between compounds or the bioavailability of individual compounds. Much of the work in vitro with phenolic compounds has utilized concentrations higher than the amount that can be obtained from the diet suggesting a role of fortified, functional foods in cancer suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. World cancer research fund and American institute for cancer research, In food, nutrition and prevention of cancer; a global perspective, 1997.

    Google Scholar 

  2. Plants: Diet and health. British nutrition foundation. Edit. G. Goldberg; Blackwell publ 2003.

    Google Scholar 

  3. Ziegler RG, Hoover RN, Pike MC et al. Migration patterns and breast cancer risk in Asian-American women. J Natl Cancer Inst 1993; 85:1819–1827.

    Article  PubMed  CAS  Google Scholar 

  4. Haenszel W, Kurihara M. Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J Natl Cancer Inst 1968; 40:43–68.

    PubMed  CAS  Google Scholar 

  5. Kolonel LN, Altshuler D, Henderson BE. The multi-ethnic cohort study: exploring genes, lifestyle and cancer risk. Nat Rev Cancer 2004; 4:519–527.

    Article  PubMed  CAS  Google Scholar 

  6. Wiencke JK. Impact of race/ethnicity on molecular pathways in human cancers. Nat Rev Cancer 2004; 4:9–84.

    Article  Google Scholar 

  7. Locatelli I, Lichtenstein P, Yashin AI. The heritability of breast cancer: a Bayesian correlated frailty model applied to Swedish twins. Twin Res 2004; 7:182–191.

    Article  PubMed  Google Scholar 

  8. Oldenburg RA, Meijers-Heijboer H, Cornelisse CJ et al. Genetic susceptibility for breast cancer: how many more genes to be found? Crit Rev Oncol Hematol 2007; 63:125–149.

    Article  PubMed  CAS  Google Scholar 

  9. Jemal A, Siegel R, Ward E et al. Cancer statistics, 2007. CA Cancer Journal for Clinicians. 2007; 56:106–130.

    Article  Google Scholar 

  10. Doll R, Peto R. Avoidable risks of cancer in the United States. J Natl Canc Inst 1981; 66:1197–1265.

    Google Scholar 

  11. Block G, Patterson B, Subar A. Fruit, vegetables and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 1992; 18:1–29.

    Article  PubMed  CAS  Google Scholar 

  12. Mathew A, Peters U, Chatterjee N et al. Fat, fibre, fruits, vegetables and risk of colorectal adenomas. Int J Cancer 2004; 108:287–292.

    Article  PubMed  CAS  Google Scholar 

  13. Gandini S, Merzenich H, Robertson C et al. Meta-analysis of studies on breast cancer risk and diet: the role of fruit and vegetable consumption and the intake of associated micronutrients. Eur J Cancer 2000; 36:636–646.

    Article  PubMed  CAS  Google Scholar 

  14. Reddy L, Odhav B, Bhoola KD. Natural products for cancer prevention: a global perspective. Pharmacol Ther 2003; 99:1–13.

    Article  PubMed  CAS  Google Scholar 

  15. Willett WC. Diet and health: what should we eat? Science 1994; 264:532–537.

    Article  PubMed  CAS  Google Scholar 

  16. Steinmetz KA, Potter JD. Vegetables, fruit and cancer prevention: a review. J Am Diet Assoc 1996; 96:1027–1039.

    Article  PubMed  CAS  Google Scholar 

  17. Imai K, Suga K, Nakachi K. Cancer-preventive effects of drinking green tea among a Japanese population. Prev Med 1997; 26:769–775.

    Article  PubMed  CAS  Google Scholar 

  18. Messina MJ, Persky V, Setchell KDR et al. Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer 1994; 21:113–131.

    Article  PubMed  CAS  Google Scholar 

  19. Nabholtz JM, Tonkin K, Smylie M et al. Chemotherapy of breast cancer: are taxanes going to change the natural history of breast cancer? Exert Opin Pharmacother 2000; 1:187–206.

    Article  CAS  Google Scholar 

  20. Duthie SJ. Berry phytochemicals, genomic stability and cancer: evidence for chemoprotection at several stages in the carcinogenic process. Mol Nutr Food Res 2007; 51:665–674.

    Article  PubMed  CAS  Google Scholar 

  21. La Vecchia C. Mediterranean diet and cancer. Public Health Nutr 2004; 7:965–968.

    PubMed  Google Scholar 

  22. Wahle KWJ, Caruso D, Ochoa J et al. Olive oil and modulation of cell signaling in disease prevention. Lipids 2004; 39:1223–1231.

    Article  PubMed  CAS  Google Scholar 

  23. Colomer R, Menendez JA. Mediterranean diet, olive oil and cancer. Clin Transl Oncol 2006; 8:15–21.

    Article  PubMed  CAS  Google Scholar 

  24. Fresco P, Borges F, Diniz C et al. New insights into the anticancer properties of polyphenols. Med Res Rev 2006; 26:747–766.

    Article  PubMed  CAS  Google Scholar 

  25. Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 2006; 71:1397–1421.

    Article  PubMed  CAS  Google Scholar 

  26. Liu RH. Potential synergism of phytochemicals in cancer prevention: mechanisms of action. J Nutr 2004; 134:3479S–3485S.

    PubMed  CAS  Google Scholar 

  27. Rosenberg-Zand RS, Jenkins DJA, Diamandis EP. Favonoids and steroid dependent cancers. J Chromat 2002; 777:219–232.

    Article  Google Scholar 

  28. Kelloff GF. Perspectives on cancer chemoprevention research and drug development. Adv Canc Res 2000; 78:199–334.

    Article  CAS  Google Scholar 

  29. Dorai T, Aggarwal BB. Role of chemopreventive agents in cancer therapy. Canc Lett 2004; 25:129–140.

    Article  Google Scholar 

  30. Hahn WC, Weinberg RA. Rules for making human tumour cells. N Engl J Med 2002; 347:1593–1603.

    Article  PubMed  CAS  Google Scholar 

  31. Korutla L, Cheung JY, Mendelsohn J et al. Inhibition of ligand induced activation of epidermal growth factor receptor tyrosine phosphotylation by curcumin. Carcinogenesis 1995; 16:1741–1745.

    Article  PubMed  CAS  Google Scholar 

  32. Korutla L, Kumar R. Inhibitory effect of curcumin on epidermal growth factor receptor kinase activity in A431 cells. Biochim Biophys Acta 1994; 1224:597–600.

    Article  PubMed  Google Scholar 

  33. Kaneuchi M, Sasaki M, Tanaka Y et al. Resveratrol suppresses growth of Ishikawa cells through down regulation of EGF. Int J Oncol 2003; 23:1167–1172.

    PubMed  CAS  Google Scholar 

  34. Hong RL, Spohn WH, Hung MC. Curcumin inhibits tyrosine kinase activity of p185neu and also depletes p185neu. Clin Cancer Res 1999; 5:1884–1891.

    PubMed  CAS  Google Scholar 

  35. Levy J, Teuerstein I, Marbach M et al. Tyrosine protein kinase activity in the DMBA-induced rat mammary tumor: inhibition by quercetin. Biochem Biophys Res Commun 1984; 123:1227–1233.

    Article  PubMed  CAS  Google Scholar 

  36. Way TD, Kao MC, Lin JK. Apigenein induces apoptosis through proteosomal degradation of HER2/ neu in HER2/neu-overexpressing breast cancer cells via the phosphoinositol 3-kinase/Akt-dependent pathway. 2004.

    Google Scholar 

  37. Menendez JA, Vazquez-Martin A, Colomer R et al. Olive oil’s bitter principle reverses acquired autoresistance to trastuzumab (Herceptin TM) in HER2-overexpressing breast cancer cells. BMC Cancer 2007; 7:80–99.

    Article  PubMed  Google Scholar 

  38. Ferrero ME, Bertelli AA, Pelegatta F. Phytoalexin resveratrol (3,4,5,-trihydroxystilbene) modulates granulocyte and monocyte endothelial cell adhesion. Transplant Proc 1998; 30:4191–4193.

    Article  PubMed  CAS  Google Scholar 

  39. Suhr Y-J. Cancer chemoprevention with dietary phytochemicals. Nature Rev Cancer 2003; 3:768–780.

    Article  Google Scholar 

  40. Nair S, Wenge LI, Kong A-N. T. Natural dietary anticancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumour cells. Acta Pharmacol Sin 2007; 28:459–472.

    Article  PubMed  CAS  Google Scholar 

  41. Kovacic P, Jacintho JD. Mechanisms of carcinogensis: focus on oxidative stress and electron transfer. Curr Med Chem 2001; 8:773–796.

    PubMed  CAS  Google Scholar 

  42. D’Alessandro T, Prasain J, Benton MR et al. Polyphenols, inflammatory response and cancer prevention: chlorination of isoflavones by human neutrophils. J Nutr 2003; 133:3773S–3777S.

    PubMed  Google Scholar 

  43. Kundu JK, Suhr YJ. Molecular basis of chemoprevention by resveratrol: NF-kB and AP-1 as potential targets. Mutat Res 2004; 555:65–80.

    PubMed  CAS  Google Scholar 

  44. Le Core L, Chalabi N, Ho CT et al. Resveratrol and breast cancer chemoprevention: Molecular mechanisms. Mol Nutr Food Res 2005; 49:462–471.

    Article  Google Scholar 

  45. Fiander H, Schneider H. Dietary ortho-polyphenols that induce glutathione-S-transferase and increase the resistance of cells to hydrogen peroxide are potential cancer chemopreventives that act by two mechanisms: the alleviation of oxidative stress and the detoxification of mutagenic xenobiotics. Cancer Lett 2000; 156:117–124.

    Article  PubMed  CAS  Google Scholar 

  46. Semczuk A, Jacowicki JA. Alterations of pRbl-cyclinD1-cdk4/6-p16 (INK4A) pathway in endometrial carcinogenesis. Cancer Lett 2004; 203:1–12.

    Article  PubMed  CAS  Google Scholar 

  47. Meeran SM, Katiyar SK. Cell cycle control as a basis for cancer chemoprevention through dietary agents. Front Biosci 2008; 13:2191–2202.

    Article  PubMed  CAS  Google Scholar 

  48. Gusman J, Malonne H, Atassi GH. A reappraisal of the potential chemopreventive and chemotherapeutic properties of resveratrol. Carcinogenesis 2001; 22:1111–1117.

    Article  PubMed  CAS  Google Scholar 

  49. Park OJ, Suhr Y-J. Chemopreventive potential of epigallocatechin gallate and genistein: evidence from epidemiological and laboratory studies. Toxicol Lett 2004; 150:43–56.

    Article  PubMed  CAS  Google Scholar 

  50. Koch AE, Polverini PJ, Kunkel SL et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 1992; 258:1798–1801.

    Article  PubMed  CAS  Google Scholar 

  51. Shen F, Chen SJ, Dong XJ et al. Suppression of IL-8 gene transcription by resveratrol in phorbol ester treated human monocyte cells. J Asian Natl Prod Res 2003; 5:151–157.

    Article  CAS  Google Scholar 

  52. Ishikawa Y, Sugiyama H, Stylianou E et al. Bioflavonoid quercetin inhibits interleukin-1 induced transcriptional expression of monocyte chemoattractant protein-1 in glomerula cells via suppression of nuclear factor kB. J Am Soc Nephrol 1999; 10:2290–2296.

    PubMed  CAS  Google Scholar 

  53. Porath D, Riegger C, Drew J et al. Epigallocatechin-3-gallate impairs chemokine production in human colon epithelial cell lines. J Pharmacol Exp Ther 2005; 315:1172–1180.

    Article  PubMed  CAS  Google Scholar 

  54. Aneja R, Odoms K, Denenberg AG et al. Theaflavin, a black tea extract, is a novel anti-inflammatory compound. Crit Care Med 2004; 32:2097–2103.

    Article  PubMed  CAS  Google Scholar 

  55. Das PM, Singal R. DNA methylation and cancer. J Clin Oncol 2004; 22:4632–4642.

    Article  PubMed  CAS  Google Scholar 

  56. Fang MZ, Wang Y, Ai N et al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation silenced genes in cancer cell lines. Cancer Res 2003; 63:7563–7570.

    PubMed  CAS  Google Scholar 

  57. Lee WJ, Shim JY, Zhu BT. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 2005; 68:1018–1030.

    Article  PubMed  CAS  Google Scholar 

  58. Fulda S, Debatin KM. Sensitisation for tumour necrosis factor-related apoptosis-inducing ligand induced apoptosis by the chemopreventive agent resveratrol. Cancer Res 2004; 64:337–346.

    Article  PubMed  CAS  Google Scholar 

  59. Chendil D, Ranga RS, Meigooni D et al. Curcumin confers radiosensitising effect in prostate cancer cell line PC-3. Oncogene 2004; 23:1599–1607.

    Article  PubMed  CAS  Google Scholar 

  60. Tang Y, Zhao DY, Elliot S et al. Epgallocatechin-3-gallate induces growth inhibition and apoptosis in human breast cancer cells through surviving suppression. Int J Oncol 2007; 31:705–711.

    PubMed  CAS  Google Scholar 

  61. Gao X, Deeb D, Media J et al. Immunomodulatory activity of resveratrol: discrepant in vitro and in vivo immunological effects. Biochem Pharmacol 2003; 66:2427–2435.

    Article  PubMed  CAS  Google Scholar 

  62. Falchetti R, Fuggetta MP, Lanzilli G et al. Effects of resveratrol on human immune cell function. Life Sci 2001; 70:81–96.

    Article  PubMed  CAS  Google Scholar 

  63. Solana R, Casado JG, Delgado E et al. Lymphocyte activation in response to melanoma: interaction of NK-associated receptors and their ligands. Cancer Immunol Immunother 2007; 56:101–109.

    Article  PubMed  CAS  Google Scholar 

  64. Nair MP, Kandaswami C, Mahajan S et al. The flavonoid, quercetin, differentially regulates Th-1 (IF-Ngamma) and Th-2 (IL4) cytokine gene expression by normal peripheral blood mononuclear cells. Biochim Biophys Acta 2002; 1593:29–36.

    Article  PubMed  CAS  Google Scholar 

  65. Okamoto I, Iwaki K, Koya-Miyata S et al. The flavonoid Kaempferol suppresses the graft-versus-host reaction by inhibiting type 1 cytokine production and CD8+ T-cell engraftment. Clin Immunol 2002; 103:132–144.

    Article  PubMed  CAS  Google Scholar 

  66. Yang Y, Paik JH, Cho D et al. Resveratrol induces the suppression of tumor-derived CD4+CD25+ regulatory T-cells. Int Immunopharmacol 2008; 8:542–547.

    Article  PubMed  CAS  Google Scholar 

  67. Wahle KWJ, Heys SD, Rotondo D. Conjugated linoleic acids (CLAs): Are they beneficial or detrimental to health? Progr Lipid Res 2004; 43(6):553–587.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wahle, K.W.J., Brown, I., Rotondo, D., Heys, S.D. (2010). Plant Phenolics in the Prevention and Treatment of Cancer. In: Giardi, M.T., Rea, G., Berra, B. (eds) Bio-Farms for Nutraceuticals. Advances in Experimental Medicine and Biology, vol 698. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7347-4_4

Download citation

Publish with us

Policies and ethics