Skip to main content

Biosensors for the Determination of Phenolic Metabolites

  • Chapter
Bio-Farms for Nutraceuticals

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 698))

Abstract

Antioxidants are groups of chemical substances, the most abundant being polyphenols, mainly found in plants, fruits and vegetables. They include flavonoids, flavonoid derivatives, polyphenols, carotenoids and anthocyanins. Currently, the nutritional quality of many foodstuffs is guaranteed by the presence of antioxidant compounds. The importance of these chemicals as indicators and preservatives of nutritional quality makes necessary the development of accurate, versatile and rapid analytical tools necessary to detect their presence in many foodstuffs and to assess their antioxidant efficacy. In this chapter, enzyme-based biosensors such as monophenol monooxygenase (tyrosinase), catechol oxidase (laccase) and horseradish peroxidase (HRP) are reviewed. Actually, these biosensors are the most commonly used for the detection of polyphenols and flavonoids content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinmetz KA, Potter JD. s.l. Vegetables, fruit and cancer. II. Mechanisms. Cancer Causes Control 1991; 2(6):427–442.

    Article  PubMed  CAS  Google Scholar 

  2. Cuvelier ME, Richard H, Berset C. Comparison of the antioxidative activity of some acid-phenols: Structure—activity relationship. Biosci Biotech Biochem 1992; 56:324–325.

    Article  CAS  Google Scholar 

  3. Kahkonen MP, Hopia A, Heinonen M. Berry phenolics and their antioxidant activity. J Agric Food Chem 2001; 49:4076–4082.

    Article  PubMed  CAS  Google Scholar 

  4. Stich HF, Rosin MP. Naturally occurring phenolics as antimutagenic and anticarcinogenic agents. Adv Exp Med 1984; 177:1–29.

    CAS  Google Scholar 

  5. Tsao R, Deng Z. Separation procedures for naturally occurring antioxidant phytochemicals. J Chromatogr B 2004; 812:85–99.

    CAS  Google Scholar 

  6. Halliwell B. How to characterize a biological antioxidant. Free Radic Res Commun 1990; 9(1):1–32.

    Article  PubMed  CAS  Google Scholar 

  7. Laguerre M, Lecomte J, Villeneuve P. Evaluation of the ability of antioxidants to counteract lipid oxidation: existing methods, new trends and challenges. Progress in Lipid Research 2007; 46(5):244–282.

    Article  PubMed  CAS  Google Scholar 

  8. Larson RA. Naturally occurring antioxidants. New York: Lewis Publishers, 1997.

    Google Scholar 

  9. Ogawa A, Arai H, Tanizawa H et al. On-line screening method for antioxidants by liquid-chromatography with chemiluminescence detection. Anal Chim Acta 1999; 383:221–230.

    Article  CAS  Google Scholar 

  10. Fitzpatrick J, Fanning L, Hearty S et al. Applications and recent developments in the use of antibodies for analysis. Anal Lett 2000; 33(13):2563–2609.

    Article  CAS  Google Scholar 

  11. Thévenot DR, Toth K, Durst R et al. Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 2001; 16(12): 121–131.

    Article  PubMed  Google Scholar 

  12. Blasco AJ, Rogerio MC, Gonzalez MC et al. “Electrochemical Index” as a screening method to determine “total polyphenolics” in foods: A proposal. Anal Chim Acta 2005; 539:237–244.

    Article  CAS  Google Scholar 

  13. Jarosz-Wilkołazka A, Ruzgas T, Gorton L. Use of laccase-modified electrode for amperometric detection of plant flavonoids. Enzyme Microb Tech 2004; 35:238–241.

    Article  Google Scholar 

  14. Thurston CF. The structure and function of fungal laccases. Microbiology 1994; 140:19–26.

    Article  CAS  Google Scholar 

  15. Xu F. Oxidation of phenols, anilines and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 1996; 35:7608–7614.

    Article  PubMed  CAS  Google Scholar 

  16. Yaropolov AI, Skorobogat’ko OV, Vartanov SS et al. Laccase—properties, catalytic mechanism and applicability. Appl Biochem Biotechnol 1994; 49:257–280.

    Article  CAS  Google Scholar 

  17. Leonowicz A, Cho NS, Luterek J et al. Fungal laccase: properties and activity on lignin. J Basic Microbiol 2001; 41:183–225.

    Article  Google Scholar 

  18. Decker H, Tuczek F. Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci TIBS 2000; 25:392–397.

    Article  CAS  Google Scholar 

  19. Decker H, Dillinger R, Tuczek F. How does tyrosinase work? Recent insights from model chemistry and structural biology. Angew Chem Int Ed 2000; 39:1591–1595.

    Article  CAS  Google Scholar 

  20. Yaropolov AI, Kharybin AN, Emneus et al. Flow injection analysis of phenols at a graphite electrode modified with co-immobilised laccase and tyrosinase. Anal Chim Acta 1995; 308:137–144.

    Article  CAS  Google Scholar 

  21. Leech D, Daigle F. Optimisation of a reagentless laccase electrode for the detection of the inhibitor azide. Analyst 1998; 123:1971–1974.

    Article  PubMed  CAS  Google Scholar 

  22. Freire RS, Thongngnamdee S, Duran N et al. Mixed enzyme (laccase/tyrosinase)-based remote electrochemical biosensor for monitoring phenolic compounds. Analyst 2002; 127:258–261.

    Article  CAS  Google Scholar 

  23. Leite OD, Lupetti KO, Fatibello-Filho O et al. Synergic effect studies of the bienzymatic system laccase-peroxidase in a voltammetric biosensor for catecholamines. Talanta 2003; 59(5):889–896.

    Article  PubMed  CAS  Google Scholar 

  24. Gomes SASS, Rebelo MJF. A new Laccase biosensor for polyphenols determination. Sensors 2003; 3:166–175.

    Article  CAS  Google Scholar 

  25. Gamella M, Campuzano S, Reviego AJ et al. Electrochemical estimation of the polyphenol index in wines using a laccase biosensor. J Agric Food Chem 2006; 54(21):7960–7967.

    Article  PubMed  CAS  Google Scholar 

  26. El Kaoutit M, Naranjo-Rodriguez I, Temsamani KR et al. Investigation of biosensor signal bioamplification: Comparison of direct electrochemistry phenomena of individual Laccase and dual Laccase-Tyrosinase copper enzymes, at a Sonogel-Carbon electrode. Talanta 2008; 75:1348–1355.

    Article  Google Scholar 

  27. Quan D, Kim Y, Shin W. Characterization of an amperometric laccase electrode covalently immobilized on platinum surface. J Electroanal Chem 2004; 561:181–189.

    Article  CAS  Google Scholar 

  28. Carralero Sanz V, Luz Mena M, Gonzalez-Costes A et al. Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: Application to the measurement of a bioelectrochemical polyphenols index in wines. Anal Chim Acta 2005; 528(1):1–8.

    Article  Google Scholar 

  29. Abhijith KS, Kumar Sujith PV, Kumar MA et al. Immobilised tyrosinase-based biosensor for the detection of tea polyphenols. Anal Bioanal Chem 2007; 389:2227–2234.

    Article  PubMed  CAS  Google Scholar 

  30. Schmidt HL, Schuhmann W. Reagentless oxidoreductase sensors. Biosens Bioelectron 1995; 11:127–135.

    Article  Google Scholar 

  31. Liu J, Su B, Lagger G et al. Antioxidant redox sensors based on DNA modified carbon screen-printed electrodes. Anal Chem 2006; 78:6879–6884.

    Article  PubMed  CAS  Google Scholar 

  32. Li YF, Liu ZM, Liu YL et al. A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles. Analyt Biochem 2006; 349:33–40.

    Article  PubMed  CAS  Google Scholar 

  33. El Kaoutit M, Naranjo-Rodriguez I, Temsamani KR et al. Dual Laccase-Tyrosinase based sonogel-carbon biosensor for monitoring polyphenols in beers. J Agric Food Chem 2007; 55:8011–8018.

    Article  Google Scholar 

  34. Mello LD, Sotomayor MDPT, Kubota LT et al. HRP-based amperometric biosensor for the polyphenols determination in vegetables extracts. Sensors and Actuators B 2003; 96:636–645.

    Article  Google Scholar 

  35. Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 2005; 55(11):4028–4041.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Litescu, S.C., Eremia, S., Radu, G.L. (2010). Biosensors for the Determination of Phenolic Metabolites. In: Giardi, M.T., Rea, G., Berra, B. (eds) Bio-Farms for Nutraceuticals. Advances in Experimental Medicine and Biology, vol 698. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7347-4_17

Download citation

Publish with us

Policies and ethics