Determination of the Antioxidants’ Ability to Scavenge Free Radicals Using Biosensors

  • Montserrat Cortina-Puig
  • Beatriz Prieto-Simón
  • Mónica Campàs
  • Carole Calas-Blanchard
  • Jean-Louis Marty
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 698)


Free radicals are highly reactive molecules generated during cellular metabolism. However, their overproduction results in oxidative stress, a deleterious process that can damage cell structures, including lipids and membranes, proteins and DNA. Antioxidants respond to this problem, scavenging free radicals. This chapter critically reviews the electrochemical biosensors developed for the evaluation of the antioxidant capacity of specific compounds. Due to the ability of these devices to perform simple, fast and reliable analysis, they are promising biotools for the assessment of antioxidant properties.


Nitric Oxide Nitric Oxide Antioxidant Capacity Gold Electrode Anal Chim 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 2005; 53:4290–4302.PubMedCrossRefGoogle Scholar
  2. 2.
    Roginsky V, Lissi EA. Review of methods to determine chain-breaking antioxidant activity in food. Food Chem 2005; 92:235–254.CrossRefGoogle Scholar
  3. 3.
    Mello LD, Kubota LT. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem 2002; 77:237–256.CrossRefGoogle Scholar
  4. 4.
    Fridovich I. The biology of oxygen radicals. Science 1978; 201:875–880.PubMedCrossRefGoogle Scholar
  5. 5.
    Hyland K, Auclair C. The formation of superoxide radical anions by a reaction between O2, OH and dimethyl sulfoxide. Biochem Biophys Res Commun 1981; 102:531–537.PubMedCrossRefGoogle Scholar
  6. 6.
    Lvovich V, Scheeline A. Amperometric sensors for simultaneous Superoxide and hydrogen peroxide detection. Anal Chem 1997; 69:454–462.PubMedCrossRefGoogle Scholar
  7. 7.
    Ge B, Lisdat F. Superoxide sensor based on cytochrome c immobilized on mixed-thiol SAM with a new calibration method. Anal Chim Acta 2002; 454:53–64.CrossRefGoogle Scholar
  8. 8.
    Tammeveski K, Tenno TT, Mashirin AA et al. Superoxide electrode based on covalently immobilized cytochrome c: modelling studies. Free Radical Biol Med 1998; 25:973–978.CrossRefGoogle Scholar
  9. 9.
    Krylov AV, Pfeil W, Lisdat F. Denaturation and renaturation of cytochrome c immobilized on gold electrodes in DMSO-containing buffers. J Electroanal Chem 2004; 569:225–231.CrossRefGoogle Scholar
  10. 10.
    Manning P, McNeil CJ, Cooper JM et al. Direct, real-time sensing of free radical production by activated human glioblastoma cells. Free Radical Biol Med 1998; 24:1304–1309.CrossRefGoogle Scholar
  11. 11.
    Lisdat F, Ge B, Ehrentreich-Forster E et al. Superoxide dismutase activity measurement using cytochrome c-modified electrode. Anal Chem 1999; 71:1359–1365.PubMedCrossRefGoogle Scholar
  12. 12.
    Lisdat F, Ge B, Reszka R et al. An electrochemical method for quantification of the radical scavenging activity of SOD. Fresenius J Anal Chem 1999; 365:494–498.CrossRefGoogle Scholar
  13. 13.
    Ignatov S, Shishniashvili D, Ge B et al. Amperometric biosensor based on a functionalized gold electrode for the detection of antioxidants. Biosens Bioelectron 2002; 17:191–199.PubMedCrossRefGoogle Scholar
  14. 14.
    Gobi KV, Mizutani F. Efficient mediatorless superoxide sensors using cytochrome c-modified electrodes: surface nano-organization for selectivity and controlled peroxidase activity. J Electroanal Chem 2000; 484:172–181.CrossRefGoogle Scholar
  15. 15.
    Gobi KV, Mizutani F. Amperometric detection of superoxide dismutase at cytochrome c-immobilized electrodes: xanthine oxidase and ascorbate oxidase incorporated biopolymer membrane for in-vivo analysis. Anal Sci 2001; 17:11–15.PubMedCrossRefGoogle Scholar
  16. 16.
    Beissenhirtz M, Scheller F, Lisdat F. Immobilized cytochrome c sensor in organic/aqueous media for the characterization of hydrophilic and hydrophobic antioxidants. Electroanalysis 2003; 15:1425–1435.CrossRefGoogle Scholar
  17. 17.
    Shipovskov S, Ferapontova EE, Gazaryan I et al. Recombinant horseradish peroxidase—and cytochrome c-based two-electrode system for detection of superoxide radicals. Bioelectrochem 2004; 63:277–280.CrossRefGoogle Scholar
  18. 18.
    Krylov AV, Beissenhirtz M, Adamzig H et al. Thick-film electrodes for measurement of superoxide and hydrogen peroxide based on direct protein-electrode contacts. Anal Bioanal Chem 2004; 378:1327–1330.PubMedCrossRefGoogle Scholar
  19. 19.
    Krylov AV, Adamzig H, Walter AD et al. Parallel generation and detection of superoxide and hydrogen peroxide in a fluidic chip. Sens Actuators B 2006; 119:118–126.CrossRefGoogle Scholar
  20. 20.
    Krylov AV, Sczech R, Lisdat F. Characterization of antioxidants using a fluidic chip in aqueous/organic media. The Analyst 2007; 132:135–141.PubMedCrossRefGoogle Scholar
  21. 21.
    Beissenhirtz MK, Scheller FW, Lisdat F. A superoxide sensor based on a multilayer cytochrome c electrode. Anal Chem 2004; 76:4665–4671.PubMedCrossRefGoogle Scholar
  22. 22.
    Guo Z, Chen J, Liu H et al. Electrochemical determination of superoxide based on cytochrome c immobilized on DDAB-modified powder microelectrode. Anal Lett 2005; 38:2033–2043.CrossRefGoogle Scholar
  23. 23.
    Dronov R, Kurth DG, Möhwald H et al. A self-assembled cytochrome c/xanthine oxidase multilayer arrangement on gold. Electrochim Acta 2007; 53:1107–1113.CrossRefGoogle Scholar
  24. 24.
    Scheller W, Jin W, Ehrentreich-Förster E et al. Cytochrome c based superoxide sensor for in vivo application. Electroanalysis 1999; 11:703–706.CrossRefGoogle Scholar
  25. 25.
    Büttemeyer R, Philipp AW, Mall JW et al. In vivo measurement of oxygen-derived free radicals during reperfusion injury. Microsurg 2002; 22:108–113.CrossRefGoogle Scholar
  26. 26.
    Büttemeyer R, Philipp AW, Schlenzka L et al. Epigallocatechin gallate can significantly decrease free oxygen radicals in the reperfusion injury in vivo. Transplant P 2003; 35:3116–3120.CrossRefGoogle Scholar
  27. 27.
    Beissenhirtz MK, Kwan RCH, Ko KM et al. Comparing an in vitro electrochemical measurement of superoxide scavenging activity with an in vivo assessment of antioxidant potential in Chinese tonifying herbs. Phytother Res 2004; 18:149–153.PubMedCrossRefGoogle Scholar
  28. 28.
    Song MI, Bier FF, Scheller FW. A method to detect superoxide radicals using Teflon membrane and superoxide dismutase. Bioelectrochem Bioenerg 1995; 38:419–422.CrossRefGoogle Scholar
  29. 29.
    Campanella L, Bonanni A, Finotti E et al. Biosensors for determination of total and natural antioxidant capacity of red and white wines: comparison with other spectrophotometric and fluorimetric methods. Biosens Bioelectron 2004; 19:641–651.PubMedCrossRefGoogle Scholar
  30. 30.
    Campanella L, Favero G, Persi L et al. Evaluation of radical scavenging properties of several plants, fresh or from a herbalist’s, using a superoxide dismutase biosensor. J Pharm Biomed Anal 2001; 24:1055–1064.PubMedCrossRefGoogle Scholar
  31. 31.
    Campanella L, Bonanni A, Tomassetti M. Determination of the antioxidant capacity of samples of different types of tea, or of beverages based on tea or other herbal products, using a superoxide dismutase biosensor. J Pharm Biomed Anal 2003; 32:725–736.PubMedCrossRefGoogle Scholar
  32. 32.
    Campanella L, Bonanni A, Favero G et al. Determination of antioxidant properties of aromatic herbs, olives and fresh fruit using an enzymatic sensor. Anal Bioanal Chem 2003; 375:1011–1016.PubMedGoogle Scholar
  33. 33.
    Bonanni A, Campanella L, Gatta T et al. Evaluation of the antioxidant and prooxidant properties of several commercial dry spices by different analytical methods. Food Chem 2007; 102:751–758.CrossRefGoogle Scholar
  34. 34.
    Campanella L, Martini E, Tomassetti M. Antioxidant capacity of the algae using a biosensor method. Talanta 2005; 66:902–911.PubMedCrossRefGoogle Scholar
  35. 35.
    Campanella L, Bonanni A, Bellantoni D et al. Biosensors for determination of total antioxidant capacity of phytotherapeutic integrators: comparison with other spectrophotometric, fluorimetric and voltammetric methods. J Pharm Biomed Anal 2004; 35:303–320.PubMedCrossRefGoogle Scholar
  36. 36.
    Campanella L, Bonanni A, Bellantoni D et al. Comparison of fluorimetric, voltammetric and biosensor methods for the determination of total antioxidant capacity of drug products containing acetylsalicylic acid. J Pharm Biomed Anal 2004; 36:91–99.PubMedCrossRefGoogle Scholar
  37. 37.
    Campanella L, Favero G, Persi L et al. New biosensor for superoxide radical used to evidence molecules of biomedical and pharmaceutical interest having radical scavenging properties. J Pharm Biomed Anal 2000; 23:69–76.PubMedCrossRefGoogle Scholar
  38. 38.
    Campanella L, De Luca S, Favero G et al. Superoxide dismutase biosensors working in non-aqueous solvent. Fresenius J Anal Chem 2001; V369:594–600.CrossRefGoogle Scholar
  39. 39.
    Campanella L, Persi L, Tomassetti M. A new tool for superoxide and nitric oxide radicals determination using suitable enzymatic sensors. Sens Actuators B 2000; 68:351–359.CrossRefGoogle Scholar
  40. 40.
    Emregül E. Development of a new biosensor for superoxide radicals. Anal Bioanal Chem 2005; 383:947–954.PubMedCrossRefGoogle Scholar
  41. 41.
    Mesáros S, Vanková Z, Grunfeld S et al. Preparation and optimization of superoxide microbiosensor. Anal Chim Acta 1998; 358:27–33.CrossRefGoogle Scholar
  42. 42.
    Mesáros S, Vanková Z, Mesárosová A et al. Electrochemical determination of superoxide and nitric oxide generated from biological samples. Bioelectrochem Bioenerg 1998; 46:33–37.CrossRefGoogle Scholar
  43. 43.
    Descroix S, Bedioui F. Evaluation of the selectivity of overoxidized polypyrrole/superoxide dismutase based microsensor for the electrochemical measurement of superoxide anion in solution. Electroanalysis 2001; 13:524–528.CrossRefGoogle Scholar
  44. 44.
    Ohsaka T, Shintani Y, Matsumoto F et al. Mediated electron transfer of polyethylene oxide-modified superoxide dismutase by methyl viologen. Bioelectrochem Bioenerg 1995; 37:73–76.CrossRefGoogle Scholar
  45. 45.
    Endo K, Miyasaka T, Mochizuki S et al. Development of a superoxide sensor by immobilization of superoxide dismutase. Sens Actuators B 2002; 83:30–34.CrossRefGoogle Scholar
  46. 46.
    Tian Y, Mao L, Okajima T et al. Superoxide dismutase-based third-generation biosensor for superoxide anion. Anal Chem 2002; 74:2428–2434.PubMedCrossRefGoogle Scholar
  47. 47.
    Tian Y, Shioda M, Kasahara S et al. A facilitated electron transfer of copper-zinc superoxide dismutase (SOD) based on a cysteine-bridged SOD electrode. Biochim Biophys Acta 2002; 1569:151–158.PubMedGoogle Scholar
  48. 48.
    Tian Y, Mao L, Okajima T et al. Electrochemistry and electrocatalytic activities of superoxide dismutases at gold electrodes modified with a self-assembled monolayer. Anal Chem 2004; 76:4162–4168.PubMedCrossRefGoogle Scholar
  49. 49.
    Ohsaka T, Tian Y, Shioda M et al. A superoxide dismutase-modified electrode that detects superoxide ion. Chem Commun 2002; 990–991.Google Scholar
  50. 50.
    Tian Y, Ariga T, Takashima N et al. Self-assembled monolayers suitable for electron-transfer promotion of copper, zinc-superoxide dismutase. Electrochem Commun 2004; 6:609–614.CrossRefGoogle Scholar
  51. 51.
    Tian Y, Mao L, Okajima T et al. A carbon fiber microelectrode-based third-generation biosensor for superoxide anion. Biosens Bioelectron 2005; 21:557–564.PubMedCrossRefGoogle Scholar
  52. 52.
    Di J, Bi S, Zhang M. Third-generation superoxide anion sensor based on superoxide dismutase directly immobilized by sol-gel thin film on gold electrode. Biosens Bioelectron 2004; 19:1479–1486.PubMedCrossRefGoogle Scholar
  53. 53.
    Moschopoulou G, Kintzios S. Application of “membrane-engineering” to bioelectric recognition cell sensors for the ultra-sensitive detection of superoxide radical: A novel biosensor principle. Anal Chim Acta 2006; 573-574:90–96.PubMedCrossRefGoogle Scholar
  54. 54.
    Fojta M, Kubicarova T, Palecek E. Electrode potential-modulated cleavage of surface-confined DNA by hydroxyl radicals detected by an electrochemical biosensor. Biosens Bioelectron 2000; 15:107–115.PubMedCrossRefGoogle Scholar
  55. 55.
    Nagaveni K, Hegde MS, Ravishankar N et al. Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 2004; 20:2900–2907.PubMedCrossRefGoogle Scholar
  56. 56.
    Portugal J, Waring MJ. Hydroxyl radical footprinting of the sequence-selective binding of netropsin and distamycin to DNA. FEBS Lett 1987; 225:195–200.PubMedCrossRefGoogle Scholar
  57. 57.
    Jaruga P, Dizdaroglu M. Repair of products of oxidative DNA base damage in human cells. Nucl Acids Res 1996; 24:1389–1394.PubMedCrossRefGoogle Scholar
  58. 58.
    Evans MD, Cooke MS. Factors contributing to the outcome of oxidative damage to nucleic acids. Bioessays 2004; 26:533–542.PubMedCrossRefGoogle Scholar
  59. 59.
    Mascini M, Palchetti I, Marrazza G. DNA electrochemical biosensors. Fresenius J Anal Chem 2001; 369:15–22.PubMedCrossRefGoogle Scholar
  60. 60.
    Mello LD, Hernandez S, Marrazza G et al. Investigations of the antioxidant properties of plant extracts using a DNA-electrochemical biosensor. Biosens Bioelectron 2006; 21:1374–1382.PubMedCrossRefGoogle Scholar
  61. 61.
    Labuda J, Bučková M, Vanícková M et al. Voltammetric detection of the DNA interaction with copper complex compounds and damage to DNA. Electroanalysis 1999; 11:101–107.CrossRefGoogle Scholar
  62. 62.
    Korbut O, Buckova M, Tarapcik P et al. Damage to DNA indicated by an electrically heated DNA-modified carbon paste electrode. J Electroanal Chem 2001; 506:143–148.CrossRefGoogle Scholar
  63. 63.
    Bučková M, Labuda J, Sandula J et al. Detection of damage to DNA and antioxidative activity of yeast polysaccharides at the DNA-modified screen-printed electrode. Talanta 2002; 56:939–947.PubMedCrossRefGoogle Scholar
  64. 64.
    Labuda J, Bučková M, Heilerová L et al. Detection of antioxidative activity of plant extracts at the DNA-modified screen-printed electrode. Sensors 2002; 2:1–10.CrossRefGoogle Scholar
  65. 65.
    Labuda J, Bučková M, Heilerová L’ et al. Evaluation of the redox properties and anti/pro-oxidant effects of selected flavonoids by means of a DNA-based electrochemical biosensor. Anal Bioanal Chem 2003; 376:168–173.PubMedGoogle Scholar
  66. 66.
    Liu J, Roussel C, Lagger G et al. Antioxidant sensors based on DNA-modified electrodes. Anal Chem 2005; 77:7687–7694.PubMedCrossRefGoogle Scholar
  67. 67.
    Liu J, Su B, Lagger G et al. Antioxidant redox sensors based on DNA modified carbon screen-printed electrodes. Anal Chem 2006; 78:6879–6884.PubMedCrossRefGoogle Scholar
  68. 68.
    Porasuphatana S, Tsai P, Rosen GM. The generation of free radicals by nitric oxide synthase. Comp Biochem Phys C 2003; 134:281–289.Google Scholar
  69. 69.
    Younathan JN, Wood KS, Meyer TJ. Electrocatalytic reduction of nitrite and nitrosyl by iron(III) protoporphyrin IX dimethyl ester immobilized in an electropolymerized film. Inorg Chem 1992; 31:3280–3285.CrossRefGoogle Scholar
  70. 70.
    Archer S. Measurement of nitric oxide in biological models. FASEB J 1993; 7:349–360.PubMedGoogle Scholar
  71. 71.
    Shibuki K, Okada D. Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature 1991; 349:326–328.PubMedCrossRefGoogle Scholar
  72. 72.
    Bedioui F, Trevin S, Devynck J. The use of gold electrodes in the electrochemical detection of nitric oxide in aqueous solution. J Electroanal Chem 1994; 377:295–298.CrossRefGoogle Scholar
  73. 73.
    Pariente F, Alonso JL, Abruña HD. Chemically modified electrode for the selective and sensitive determination of nitric oxide (NO) in vitro and in biological systems. J Electroanal Chem 1994; 379:191–197.CrossRefGoogle Scholar
  74. 74.
    Prakash R, Srivastava RC, Seth PK. Polycarbazole modified electrode; nitric oxide sensor. Polym Bull 2001; 46:487–490.CrossRefGoogle Scholar
  75. 75.
    Malinski T, Taha Z. Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 1992; 358:676–678.PubMedCrossRefGoogle Scholar
  76. 76.
    Pontié M, Lecture H, Bedioui F. Improvement in the performance of a nickel complex-based electrochemical sensor for the detection of nitric oxide in solution. Sens Actuators B 1999; 56:1–5.CrossRefGoogle Scholar
  77. 77.
    Wang Y, Li Q, Hu S. A multiwall carbon nanotubes film-modified carbon fiber ultramicroelectrode for the determination of nitric oxide radical in liver mitochondria. Bioelectrochem 2005; 65:135–142.CrossRefGoogle Scholar
  78. 78.
    Zhang L, Zhao G-C, Wei X-W et al. A nitric oxide biosensor based on myoglobin adsorbed on multi-walled carbon nanotubes. Electroanalysis 2005; 17:630–634.CrossRefGoogle Scholar
  79. 79.
    Friedemann MN, Robinson SW, Gerhardt GA. o-phenylenediamine-modified carbon fiber electrodes for the detection of nitric oxide. Anal Chem 1996; 68:2621–2628.PubMedCrossRefGoogle Scholar
  80. 80.
    Park J-K, Tran PH, Chao JKT et al. In vivo nitric oxide sensor using nonconducting polymer-modified carbon fiber. Biosens Bioelectron 1998; 13:1187–1195.PubMedCrossRefGoogle Scholar
  81. 81.
    Casero E, Darder M, Pariente F et al. Peroxidase enzyme electrodes as nitric oxide biosensors. Anal Chim Acta 2000; 403:1–9.CrossRefGoogle Scholar
  82. 82.
    Fan C, Li G, Zhu J et al. A reagentless nitric oxide biosensor based on hemoglobin-DNA films. Anal Chim Acta 2000; 423:95–100.CrossRefGoogle Scholar
  83. 83.
    Fan C, Liu X, Pang J et al. Highly sensitive voltammetric biosensor for nitric oxide based on its high affinity with hemoglobin. Anal Chim Acta 2004; 523:225–228.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Montserrat Cortina-Puig
    • 1
  • Beatriz Prieto-Simón
  • Mónica Campàs
  • Carole Calas-Blanchard
  • Jean-Louis Marty
  1. 1.BIOMEM groupPerpignan CedexFrance

Personalised recommendations