Skip to main content

Hairy Root Cultures for Secondary Metabolites Production

  • Chapter
Bio-Farms for Nutraceuticals

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 698))

Abstract

Hairy roots (HRs) are differentiated cultures of transformed roots generated by the infection of wounded higher plants with Agrobacterium rhizogenes. This pathogen causes the HR disease leading to the neoplastic growth of roots that are characterized by high growth rate in hormone free media and genetic stability. HRs produce the same phytochemicals pattern of the corresponding wild type organ. High stability and productivity features allow the exploitation of HRs as valuable biotechnological tool for the production of plant secondary metabolites. In addition, several elicitation methods can be used to further enhance their accumulation in both small and large scale production. However, in the latter case, cultivation in bioreactors should be still optimized. HRs can be also utilised as biological farm for the production of recombinant proteins, hence holding additional potential for industrial use. HR technology has been strongly improved by increased knowledge of molecular mechanisms underlying their development. The present review summarizes updated aspects of the hairy root induction, genetics and metabolite production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gaudin V, Vrain T, Jouanin L. Bacterial genes modifying hormonal balances in plants. Plant Physiol Biochem 1994; 32(1):11–29.

    CAS  Google Scholar 

  2. Giri A, Narasu ML. Transgenic HRs: recent trends and applications. Biotech Adv 2000; 18:1–22.

    Article  CAS  Google Scholar 

  3. Guillon S, Tremouillaux-Guiller J, Pati PK et al. Hairy root research: recent scenario and exciting prospects. Commen CurrOpin Plant Biol 2006; 9:341–346.

    CAS  Google Scholar 

  4. Tzfira T, Citovsky V. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechn 2006; 17:147–154.

    Article  CAS  Google Scholar 

  5. Tzfira T, Li J, Lacroix B et al. Agrobacterium T-DNA integration: molecules and models. TRENDS Gen 2004; 20:8.

    Article  CAS  Google Scholar 

  6. Klee HJ, Romano CP. The roles of phytohormones in development as studied in transgenic plants. Crit Rev Plant Sci 1994; 13(4):311–324.

    CAS  Google Scholar 

  7. White FF, Taylor BH, Huffmman GA et al. Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 1985; 164:33–44.

    PubMed  CAS  Google Scholar 

  8. Christey MC. Use of Ri-mediated transformation for production of transgenic plants. In vitro Cell Dev Biol Plant 2001; 37:687–700.

    Article  CAS  Google Scholar 

  9. Tepfer D. Transformation of several species of higher plants by Agrobacterium rhizogenes: Sexual transmission of the transformed genotype and phenotype. Cell 1984; 37:959–967.

    Article  PubMed  CAS  Google Scholar 

  10. Christey MC. Transgenic crop plants using Agrobacterium rhizogenes mediated transformation. In: Doran PM, ed. Hairy roots: culture and applications. Amsterdam: 7 Harwood Academic Publishers, 1997; 99–111.

    Google Scholar 

  11. Spena A, Schmulling T, Koncz C et al. Independent and synergistic activity of rolA, B and C loci in stimulating abnormal growth in plants. EMBO J 1987; 6:3891–3899.

    PubMed  CAS  Google Scholar 

  12. Huffman GA, White FF, Gordon MP et al. Hairy root inducing plasmid: physical map and homology to tumor-inducing plasmids. J Bacteriol 1984; 157:269–276.

    PubMed  CAS  Google Scholar 

  13. Jouanin L. Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmids 1984; 12:91–102.

    Article  CAS  Google Scholar 

  14. Slightom JL, Durand-Tardif M, Jouanin L et al. Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. J Biol Chem 1986; 261:108–121.

    PubMed  CAS  Google Scholar 

  15. Capone I, Spano L, Cardarelli M. Upstream noncoding region which confers polar expression to Ri plasmid root inducing gene rolB. Plant Mol Biol 1989; 13:43–52.

    Article  PubMed  CAS  Google Scholar 

  16. Aoki S, Syono K. Synergistic function of rolB, rolC, ORF13 and ORF14 of TL-DNA of Agrobacterium rhizogenes in hairy root induction in Nicotiana tabacum. Plant Cell Physiol 1999; 40:252–256.

    CAS  Google Scholar 

  17. Aoki S. Resurrection of an ancestral gene: functional and evolutionary analyses of the Ng rol genes transferred from Agrobacterium to Nicotiana. J Plant Res 2004; 117:329–337.

    PubMed  CAS  Google Scholar 

  18. Schmulling T, Schell J, Spena A. Single genes from Agrobacterium rhizogenes influence plant development. EMBOJ 1988; 7:2621–2629.

    CAS  Google Scholar 

  19. Lemcke K, Schmulling T. Gain of function assays identify nonrol genes from Agrobacterium rhizogenes TL-DNA that alter plant morphogenesis or hormone sensitivity. Plant J 1998; 15:423–433.

    Article  PubMed  CAS  Google Scholar 

  20. Casanova E, Trillasa MI, Moysseta LR et al. Influence of rol genes in floriculture. Biotech Adv 2005; 23:3–39.

    Article  CAS  Google Scholar 

  21. Cardarelli M, Mariotti D, Pomponi M. Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol Gen Genet 1987; 209:475–480.

    Article  PubMed  CAS  Google Scholar 

  22. Sinkar VP, Pythoud F, White FF et al. RolA locus of the Ri plasmid directs developmental abnormalities in transgenic tobacco plants. Genes Dev 1988; 2:688–697.

    Article  PubMed  CAS  Google Scholar 

  23. Mauro ML, Trovato M, De Paolis A et al. The plant oncogene rolD stimulates flowering in transgenic tobacco plants. Dev Biol 1996; 180:693–700.

    Article  PubMed  CAS  Google Scholar 

  24. Nilsson O, Olsson O. Getting to the root: The role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 1997; 100:463–473.

    Article  CAS  Google Scholar 

  25. Moriuchi H, Okamoto C, Nishihama R et al. Nuclear localization and interaction of rolB with plant 14-3-3 proteins correlates with induction of adventitious roots by the oncogene rolB. Plant J 2004; 38:260–275.

    Article  PubMed  CAS  Google Scholar 

  26. Smith AG, John KE, Gardner N. Dwarfing ornamentally crops with the rolC gene. In: Texixeira da Siva JA, ed. Floriculture, Ornamental and Plant Biotechnology, 2006; 2:54–59.

    Google Scholar 

  27. Kiyokawa S, Kikuchi Y, Kamada H et al. Genetic transformation of Begonia tuberhybrida by Ri rol gene. Plant Cell Rep 1996; 15:606–609.

    Article  CAS  Google Scholar 

  28. Giovannini A, Secchioni N, Rabaglio M et al. Characterization of ornamental Datura plants transformed by Agrobacterium rhizogenes. In vitro cellular and developmental Biology Plant 1997; 33:101–106.

    Article  Google Scholar 

  29. Estruch JJ, Schell J, Spena A. The protein encoded by rolB plant oncogene hydrolyses indole glucosides. EMBOJ 1991; 10:3125–3128.

    CAS  Google Scholar 

  30. Casanova E, Zuker A, Trillas MI et al. The rolC gene in carnation exhibits cytokinin-and auxin-like activities. Sci Hort 2003; 97:321–331.

    Article  CAS  Google Scholar 

  31. Bulgakov VP, Kusaykin M, Tchernoded GK et al. Carbohydrase activities of the rolC-gene transformed and nontransformed ginseng cultures. Fitoterapia 2002; 73:638–643.

    Article  PubMed  CAS  Google Scholar 

  32. Bonhomme V, Matta D L, Fliniaux MA. Effects of the rolC gene on hairy root: induction development and tropane alkaloid production by Atropa belladonna. J Nat Prod 2000; 63:1249–1252.

    Article  PubMed  CAS  Google Scholar 

  33. Palazon J, Cusido RM, Bonfill M et al. Elicitation of different Panax ginseng transformed root phenotypes for an improved ginsenoside production. Plant Physiol Biochem 2003; 41:1019–1025.

    Article  CAS  Google Scholar 

  34. Palazon J, Mallol A, Eibl R et al. Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Med 2003; 69:344–349.

    Article  PubMed  CAS  Google Scholar 

  35. Bulgakov VP, Khodakovskaya MV, Labetskaya NV et al. The impact of plant rolC oncogene on ginsenoside production by ginseng hairy root cultures. Phytochem 1998; 49:1929.

    Article  CAS  Google Scholar 

  36. Bulgakov VP, Tchernoded GK, Mischenko NP et al. Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes. J Biotech 2002b; 97:213–221.

    Article  CAS  Google Scholar 

  37. Bulgakov VP, Tchernoded GK, Mischenko NP et al. Effects of Ca+2 channel blockers and protein kinase/ phosphatase inhibitors on growth and anthraquinone production in Rubia cordifolia callus cultures transformed by the rolB and rolC genes. Planta 2003; 217:349–355.

    Article  PubMed  CAS  Google Scholar 

  38. Bulgakov VP, Veselova MV, Tchernoded GK. Inhibitory effect of the Agrobacterium rhizogenes rolC gene on rabdosiin and RA production in Eritrichium sericeum and Lithospermum erythrorhizon transformed cell cultures. Planta 2005; 221:471–478.

    Article  PubMed  CAS  Google Scholar 

  39. Tanaka N, Yamakawa M, Yamashita I. Characterization of transcription of genes involved in hairy root induction on pRi1724 core-T-DNA in two Ajuga reptans hairy root lines. Plant Sci 1988; 137:95–105.

    Article  Google Scholar 

  40. Tanaka N, Fujikawa Y, Aly MAM et al. Proliferation and rol gene expression in hairy root lines of Egyptian clover (Trifolium alexandrinum L.). Plant Cell Tiss Org Cult 2001; 66:175–182.

    Article  CAS  Google Scholar 

  41. Mauriel C, Barbier-Brygoo H, Spena A et al. Single rol genes from the Agrobacterium rhizogenes TLDNA alter some of the cellular responses to auxin in Nicotiana tabacum. Plant Physiol 1991, 97:212–216.

    Article  Google Scholar 

  42. Nilsson O, Crozier A, Schmuelling T et al. Indole-3-acetic acid homeostasis in transgenic tobacco plants expressing the Agrobacterium rhizogenes rolB gene. Plant J 1993; 3:681–689.

    Article  CAS  Google Scholar 

  43. Filippini F, Rossi V, Marin O et al. A plant oncogene as a phosphatase. Nature 1996; 379:499–500.

    Article  PubMed  CAS  Google Scholar 

  44. Filippini F, Lo Schiavo F, Terzi M et al. The plant oncogene rolB alters binding of auxin to plant cell membranes. Plant Cell Physiol 1994; 35:767–771.

    CAS  Google Scholar 

  45. Kiselev KV, Dubrovina AS, Veselova MV et al. The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotech 2007; 123:681–692.

    Article  CAS  Google Scholar 

  46. Laloi C, Apel K, Danon A. Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 2004; 7:323–328.

    Article  PubMed  CAS  Google Scholar 

  47. Trovato M, Maras B, Linhares F et al. The plant oncogene rolD encodes a functional ornithine cyclodeaminase. PNAS 2001; 698(23):13449–13453.

    Article  Google Scholar 

  48. Verslues PE, Sharp RE. Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. II. Metabolic source of increased proline deposition in the elongation zone. Plant Physiol 1999; 119:1349–1360.

    Article  PubMed  CAS  Google Scholar 

  49. Varner JE, Lin L-S. Plant cell wall architecture. Cell 1989; 56:231–239.

    Article  PubMed  CAS  Google Scholar 

  50. Meyer A, Tempe’ J, Costantino P. Hairy root; a molecular overview. Functional analysis of Agrobacterium rhizogenes T-DNA genes. In: Stacey G, Keen NT, eds. Plant Microbe Interactions. St. Paul: APS Press, 2000:93–139.

    Google Scholar 

  51. Dehio C, Grossmann K, Schell J et al. Phenotype and hormonal status of transgenic tobacco plants over-expressing the rolA gene of Agrobacterium rhizogenes T-DNA. Plant Mol Biol 1993; 23:1199–1210.

    Article  PubMed  CAS  Google Scholar 

  52. Schmulling T, Fladung M, Grossmann K et al. Hormonal content and sensitivity of transgenic tobacco and potato plants expressing single rol genes of Agrobacterium rhizogenes T-DNA. Plant J 1993; 3:371–382.

    Article  Google Scholar 

  53. Sun L-Y, Monneuse M-O, Martin-Tanguy J et al. Changes in flowering and the accumulation of polyamines and hydroxycinnamic acid-polyamine conjugates in tobacco plants transformed by the rolA locus from the Ri TL-DNA of Agrobacterium rhizogenes. Plant Sci 1991; 80:145–156.

    Article  CAS  Google Scholar 

  54. Martin-Tanguy J, Sun L-Y, Burtin D. Attenuation of the phenotype caused by the root-inducing, left-hand, transferred DNA and its rolA gene. Plant Physiol 1996; 111:259–267.

    PubMed  CAS  Google Scholar 

  55. Aoki S, Kawaoka A, Sekine M et al. Sequence of the cellular T-DNA in the untransformed genome of Nicotiana glauca that is homologous to ORFs 13 and 14 of the Ri plasmid and analysis of its expression in genetic tumours of N. glauca x N. langsdorffii. Mol Gen Genet 1994; 243:706–710.

    PubMed  CAS  Google Scholar 

  56. Fruendt C, Meyer AD, Ichikawa T et al. A tobacco homologue of the Ri-plasmid orf13 gene causes cell proliferation in carrot root discs. Mol Gen Genet 1998; 259:559–568.

    Article  Google Scholar 

  57. Hansen G, Vaubert D, Heron JN et al. Phenotypic effects of overexpression of Agrobacterium rhizogenes T-DNA ORF13 in transgenic tobacco plants are mediated by diffusible factors. Plant J 1993; 4:581–585.

    Article  CAS  Google Scholar 

  58. Sinha N, Williams R, Hake S. Overexpression of the maize homeobox gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev 1993; 7:787–795.

    Article  PubMed  CAS  Google Scholar 

  59. Chuck G, Lincoln C, Hake. KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 1996; 8:1277–1289.

    Article  PubMed  CAS  Google Scholar 

  60. Sentoku N, Sato Y, Matsuoka M. Overexpression of rice OSH genes induces ectopic shoots on leaf sheaths of transgenic rice plants. Dev Biol 2000; 220:358–364.

    Article  PubMed  CAS  Google Scholar 

  61. Stieger PA, Meyer AD, Kathmann P et al. The orf13 T-DNA Gene of Agrobacterium rhizogenes Confers Meristematic Competence to Differentiated Cells. Plant Physiol 2004; 135:1798–1808.

    Article  PubMed  CAS  Google Scholar 

  62. Olszowska O, Furmanowa M. Micropropagation of S. officinalis by shoot buds. Planta Med 1990; 56(6):637.

    Article  Google Scholar 

  63. Hosoki T, Tahara Y. In vitro propagation of S. leucantha. Cav Hort Sci 1993; 28(3):226.

    Google Scholar 

  64. Molina M, Luis A, Luis JG. In vitro mass propagation of S. canariensis by axillary shoots. Acta Soc Bot Poloniae 1997; 66(3):351–354.

    Google Scholar 

  65. Skaia E, Wysokinska H. In vitro regeneraton of S. nemorosa L. from shoot tips and leaf explants. In vitro Cell and Develop. Biol Plant 2004; 40(6):596–502.

    Google Scholar 

  66. Kintzios S, Nikolaou A, Skoula M. Somatic embryogenesis and rosmarinic acid accumulation in S. officinalis and S. fruticosa callus cultures. Plant Cell Rep 1999; 18(6):462–466.

    Article  CAS  Google Scholar 

  67. Chen H, Chen F, Zhang YL et al. Production of lithospermic acid B and rosmarinic acid in hairy root cultures of S. miltiorrhiza. J Ind Microb Biotech 1999; 22(3):133–138.

    Article  CAS  Google Scholar 

  68. Savona M, Mascarello C, Bisio A et al. S. cinnabarina Martens et Galeotti: optimisation of the extraction of a new compound, tissue culture and hairy root transformation. Agr Medit 2003; 133:28–35.

    Google Scholar 

  69. Bisio A, De Tommasi N, Romussi G. Diterpenoids from S. wagneriana. Planta Medica 2004; 70:452–457.

    Article  PubMed  CAS  Google Scholar 

  70. Macchia M, Pagano A, Ceccarini L et al. Agronomic and phytochemical characteristics in some genotypes of Ocimum basilicum L. Acta Hort 2006; 723:143–149.

    CAS  Google Scholar 

  71. Szabo E, Thelen A, Petersen M. Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei. Plant Cell Rep 1999; 18:484–489.

    Article  Google Scholar 

  72. Bais HP, Walker TS, Schweizer HPB et al. Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 2002; 40:983–995.

    Article  CAS  Google Scholar 

  73. Kintzios S. Makri O, Panagiotopoulos E et al. In vitro rosmarinic acid accumulation in sweet basil (Ocimum basilicum). Biotechn Lett 2003; 25(5):405–408.

    Article  CAS  Google Scholar 

  74. Zeldin EL, Haas TB, McCown BH et al. Air recovery of essential oils from plants grown in vitro: a new production strategy. Hort Sci 1988; 23:759–762.

    Google Scholar 

  75. Tada H, Murakam Y, Omoto T et al. Rosmarinic acid and related phenolics in hairy root cultures of Ocimum basilicum. Phytochem 1996; 42(2):431–434.

    Article  CAS  Google Scholar 

  76. Petersen M, Hausler E, Meinhard J et al. The biosynthesis of rosmarinic acid in suspension cultures of Coleus blumei. Plant Cell Tiss Organ Cult 1994; 38:171–179.

    Article  CAS  Google Scholar 

  77. Hippolyte I. In vitro rosmarinic acid production. In: Kintzios S, ed. Medicinal and Aromatic Plants-Industrial Approaches: The Genus Salvia. Amsterdam: Harwood Publishers, 2000; 233–242.

    Google Scholar 

  78. Dixon RA. Natural products and plant disease resistance. Nature 2001; 411:843–847.

    Article  PubMed  CAS  Google Scholar 

  79. Kokkini S. Chemical Races Within the Genus Mentha L. In: Linskens HF, Jackson JF, eds. Essential Oils and Waxes. Heidelberg: SpringerVerlag, 1991; 12:63–67.

    Google Scholar 

  80. Banthorpe DV. Mentha Species (Mints): In vitro Culture and Production of lower Terpenoids and Pigments. In: Bajaj YPS, ed. Biotechnology in Agricultural and Forestry, Medicinal and Aromatic Plants IX: Heidelberg: Springer-Verlag, 1996; 37:202–225.

    Google Scholar 

  81. Spencer A, Harnill JD, Rhodes MJ. Production of terpenes by differentiated shoot cultures of Mentha citrata transformed with Agrobacterium tumefaciens T37. Plant Cell Rep 1990; 8:601–604.

    Article  CAS  Google Scholar 

  82. Spencer A, Hami JD, Rhodes MJC. In vitro biosynthesis of monoterpenes by Agrobacterium transfomed shoot cultures of two Mentha species. Phytochem 1993; 32:911–919.

    Article  CAS  Google Scholar 

  83. Diemer F, Jullien F, Faure O et al. High efficiency transformation of peppermint (Mentha piperita L.) with Agrobacterium tumefaciens. Plant Sci 1998; 136:101–108.

    Article  CAS  Google Scholar 

  84. Niu X, Lin K, Hasegawa PM et al. Transgenic peppermint (Mentha x piperita L.) plants obtained by cocultivation with a Agrobacterium tumefaciens. Plant Cell Rep 1998; 17:165–171.

    Article  CAS  Google Scholar 

  85. Diemer F, Caissard JC, Moja S et al. Agrobacterium tumefaciens mediated transformation of Mentha spicata and Mentha arvensis. Plant Cell Tissue Organ Cult 1999; 57:75–78.

    Article  Google Scholar 

  86. Krasnyanski S, May RA, Loskutov A et al. Transformation of the limonene synthase gene into peppermint (Mentha piperita L.) and preliminary studies on the essential oil profiles of single transgenic piants. Teor Appl Genet 1999; 99:676–682.

    Article  CAS  Google Scholar 

  87. Niu X, Li X, Veronese P et al. PM. Factors affecting Agrobacterium tumefaciens mediated transformation of peppermint. Plant Cell Rep 2000; 19:304–310.

    Article  CAS  Google Scholar 

  88. Diemer F, Caissard JC, Sandrine M et al. Altered monoterpene composition in transgenic mint following the introduction of 4S-limonene synthase. Plant Physiol Biochem 2001; 39:603–614.

    Article  CAS  Google Scholar 

  89. Mahmoud SS, Croteau RB. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci USA 2001; 98:8915–8920.

    Article  PubMed  CAS  Google Scholar 

  90. Inoue F, Sugiura H, Tabuchi A et al. Plant regeneration of peppermint, Mentha piperita, from the hairy roots generated from microsegment infected with Agrobacterium rhizogenes. Plant Biotech 2003; 20:169–172.

    Article  CAS  Google Scholar 

  91. Strycharz S, Shetty K. Effect of Agrobacterium rhizogenes on phenolic content of Mentha pulegium elite clonal line for phytoremediation applications. Process Biochem 2002a; 38:287–293.

    Article  CAS  Google Scholar 

  92. Strycharz S, Shetty K. Peroxidase activity and phenolic content in elite clonal lines of Mentha pulegium in response to polymeric dye R-478 and Agrobacterium rhizogenes. Process Biochem 2002; 37:805–812.

    Article  CAS  Google Scholar 

  93. Pellati F, Benvenuti S, Magro L et al. Analysis of phenolic compounds and radical scavenging activity of Echinacea spp. J Pharm Biomed Anal 2004; 35:289–301.

    Article  PubMed  CAS  Google Scholar 

  94. Li TSC. Echinacea: Cultivation and medicinal value. Hort Techn 1998; 8:122–129.

    Google Scholar 

  95. Hu C, Kitts DD. Studies on the antioxidant activity of Echinacea root extract. J Agr Food Chem 2000; 48(5):1466–1472.

    Article  CAS  Google Scholar 

  96. Bergeron C, Gafner S, Batcha LL et al. Stabilization of caffeic acid derivatives in Echinacea purpurea L. glycerin extract. J Agric Food Chem 2002; 50:3967–3970.

    Article  PubMed  CAS  Google Scholar 

  97. Smith MAL, Kobayashi H, Gawienowski M et al. An in vitro approach to investigate medicinal chemical synthesis by three herbal plants. Plant Cell Tissue Organ Cult 2002; 70:105–111.

    Article  CAS  Google Scholar 

  98. Baskin CC, Baskin JM, Hoffman GR. Seed dormancy in the prairie forb Echinacea angustifolia var. angustifolia (Asteraceae): After ripening pattern during cold stratification. Int J Plant Sci 1992; 153:239–243.

    Article  Google Scholar 

  99. Macchia M, Angelini LG, Ceccarini L. Methods to overcome seed dormancy in Echinacea angustifolia D.C. Sci Hort 2001; 89:317–324.

    Article  Google Scholar 

  100. Feghahati SMJ, Reese RN. Ethylene-, Light-and Prechill-enhanced Germination of Echinacea angustifolia Seeds. J Amer Soc Hort Sci 1994; 119:853–858.

    CAS  Google Scholar 

  101. Sari AO, Morales MR, Simon JE. Ethephon can overcome seed dormancy and improve seed germination in Purple coneflower species Echinacea angustifolia and Echinacea pallida. Hort Techn 2001; 11:202–205.

    CAS  Google Scholar 

  102. Wang B, Zhang G, Zhu L et al. Genetic transformation of Echinacea purpurea with Agrobacterium rhizogenes and bioactive ingredient analysis in transformed cultures Colloids and Surfaces B: Biointerfaces 2006; 53:101–104.

    CAS  Google Scholar 

  103. Liu CZ, Abbasi BH, Gao M et al. Caffeic acid derivatives production by hairy root cultures of Echinacea purpurea. J Agric Food Chem 2006; 54:8456–8460.

    Article  PubMed  CAS  Google Scholar 

  104. Reyes LF, Cisneros-Zevallos L. Wounding stress increases the phenolic content and antioxidant capacity of purple-flesh potatoes (Solanum tuberosum). J Agric Food Chem 2003; 51:5296–5300.

    Article  PubMed  CAS  Google Scholar 

  105. Shirley BW. Flavonoid biosynthesis: a control model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol 2001; 126:485–493.

    Article  Google Scholar 

  106. Abbasi BH, Tian CL, Murch SJ et al. Light-enhanced caffeic acid derivatives biosynthesis in hairy root cultures of Echinacea purpurea. Plant Cell Rep 2007; 8:1367–1372.

    Article  CAS  Google Scholar 

  107. Cheminat A, Zawatzky R, Becker H et al. Caffeoyl conjugates from Echinacea species: structure and biological activity. Phytochem 1988; 27:2787–2794.

    Article  CAS  Google Scholar 

  108. Tang W, Eisenbrand G. Panax ginseng. In: Mayer CA, ed. Chinese Drugs of Plant Origin. Berlin Springer-Verlag 1992:710–737.

    Google Scholar 

  109. Proctor JTA. Ginseng: old crop, new directions. In: Janick J, ed. Progress in New Crops. Arlington: ASHS Press, 1996:565–577.

    Google Scholar 

  110. Wu J, Zhong J. Production of ginseng and its bioactive components in cell culture: current technological and applied aspects. J Biotechnol 1999; 68:88–98.

    Article  Google Scholar 

  111. Inomata S, Yokoyama M, Gozu Y et al. Growth pattern and ginsenoside production of Agrobacterium-transformed Panax ginseng roots. Plant Cell Rep 1993; 12:681–686.

    Article  CAS  Google Scholar 

  112. Mallol A, Cusido RM, Palazon J et al. Ginsenoside production in different phenotypes of Panax ginseng transformed roots. Phytochem 2001; 57:365–371.

    Article  CAS  Google Scholar 

  113. Vazquez-Flota F, Moreno-Valenzuela O, Miranda-Ham ML et al. Catharanthine and ajmalicine synthesis in Catharanthus roseus hairy root cultures. Plant Cell Tissue Organ Cult 1994; 38:273–279.

    Article  CAS  Google Scholar 

  114. Jeong GT, Park D-H, Ryu H-W et al. Effects of inoculum conditions on growth of hairy roots of Panax ginseng C.A. Meyer. Appl Biochem Biotechnol 2004; 113-116:1193–1203.

    Article  PubMed  Google Scholar 

  115. Yu KW, Gao W, Han EJ et al. Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem Eng 2002; 11:211–215.

    Article  CAS  Google Scholar 

  116. Jeong GT, Park DH, Ryu HW et al. Production of antioxidant compounds by culture of Panax ginseng C.A. Meyer hairy roots: I. Enhanced production of secondary metabolite in hairy root cultures by elicitation. Appl Biochem Biotechnol 2005; 121-124:1147–1157.

    Article  PubMed  Google Scholar 

  117. Jeong GT, Park DH. Enhanced secondary metabolite biosynthesis by elicitation in transformed plant root system: effect of abiotic elicitors. Appl Biochem Biotechnol 2006; 129-132:436–446.

    Article  PubMed  Google Scholar 

  118. Zhou E, Cao X, Zhang R et al. Stimulation of saponin production in Panax ginseng hairy roots by two oligosaccharides from Paris polyphylla var. yunnanensis. Biotechnol Lett 2007; 29:631–634.

    Article  PubMed  CAS  Google Scholar 

  119. John M, Rohrig H, Schmidt J et al. Cell signaling by oligosaccharides. Trends Plant Sci 1997; 2:111–115.

    Article  Google Scholar 

  120. Vorwerk S, Somerville S, Somerville C. The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci 2004; 9:203–209.

    Article  PubMed  CAS  Google Scholar 

  121. Fraga BM, Diaz CE, Guadano A et al. Diterpenes from Salvia broussonetii Transformed Roots and their insecticidal activity. J Agric Food Chem 2005; 53:5200–5206.

    Article  PubMed  CAS  Google Scholar 

  122. De Felice A, Malafronte A, De Tommasi N et al. Metabolic profiling of cells and transformed hairy roots of Salvia sclarea. 2004; XLVIII SIGA Annual Congress.

    Google Scholar 

  123. Li F-X, Jin Z-P, Zhao D-X et al. Overexpression of the Saussurea medusa chalcone isomerase gene in S. involucrata hairy root cultures enhances their biosynthesis of apigenin. Plant Physiol Biochem 2006; 41:1019–1025.

    Google Scholar 

  124. Chen H, Chen F, Chiu CK et al. The effect of yeast elicitor on the growth and secondary metabolism of hairy root cultures of Salvia miltiorrhiza. Enzyme Microb Technol 2001; 22:133–138.

    Google Scholar 

  125. Zhang C, Qiong Y, Waikeung C et al. Enhancement of Tanshinone Production in Salvia miltiorrhiza Hairy Root Culture by Ag+ Elicitation and Nutrient Feeding. Planta Med 2004 70(2):147–151.

    Article  PubMed  CAS  Google Scholar 

  126. Yan Q, Hu Z, Xiang TR et al. Efficient production and recovery of diterpenoid tanshinones in Salvia miltiorrhiza hairy root cultures with in situ adsorption, elicitation and semi-continuous operation. J Biotechn 2005; 119:416–424.

    Article  CAS  Google Scholar 

  127. Ge X, Wu J. Induction and potentiation of diterpenoid tanshinone accumulation in Salvia miltiorrhiza hairy roots by p-aminobutyric acid. Appl Microbiol Biotechnol 2005; 68:183–188.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pistelli, L., Giovannini, A., Ruffoni, B., Bertoli, A., Pistelli, L. (2010). Hairy Root Cultures for Secondary Metabolites Production. In: Giardi, M.T., Rea, G., Berra, B. (eds) Bio-Farms for Nutraceuticals. Advances in Experimental Medicine and Biology, vol 698. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7347-4_13

Download citation

Publish with us

Policies and ethics