Skip to main content

Perspective for the Use of Genetic Transformants in Order to Enhance the Synthesis of the Desired Metabolites: Engineering Chloroplasts of Microalgae for the Production of Bioactive Compounds

  • Chapter
Bio-Farms for Nutraceuticals

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 698))

Abstract

Eukaryotic microalgae have recently gained particular interest as bioreactors because they provide attractive alternatives to bacterial, yeast, plant and other cell-based systems currently in use. Over the last years there has been considerable progress in genetic engineering technologies for algae. Biotechnology companies start to apply these techniques to alter metabolic pathways and express valuable compounds in different cell compartments. In particular, the eukaryotic unicellular alga Chlamydomonas reinhardtii appears to be a most promising cell factory since high amounts of foreign proteins have been expressed in its chloroplast compartment. For this alga the complete nuclear, plastidal and mitochondrial genome sequences have been determined and databases are available for any searching or cloning requirements. Apart from being easily transformable, stable transgenic strains and production volumes in full containment can be obtained within a relatively short time. Furthermore, C. reinhardtii is a green alga which belongs to the category of organisms generally recognized as safe (GRAS status). Thus, enhancing food with edible algae like Chlamydomonas engineered to (over)produce functional ingredients has the potential to become an important factor in food and feed technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walker TL, Purton S, Becker DK et al. Microalgae as bioreactors. Plant Cell Rep 2005; 24:629–641.

    Article  PubMed  CAS  Google Scholar 

  2. Debuchy R, Purton S, Rochaix JD. The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 1989; 8:2803–2809.

    PubMed  CAS  Google Scholar 

  3. Kindle KL, Schnell RA, Fernandez E et al. Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 1989; 109:2589–2601.

    Article  PubMed  CAS  Google Scholar 

  4. Ferris PJ. Localization of the nic-7, ac-29 and thi-10 genes within the mating-type locus of Chlamydomonas reinhardtii. Genetics 1995; 141:543–549.

    PubMed  CAS  Google Scholar 

  5. Spolaore P, Joannis-Cassan C, Duran E et al. Commercial applications of microalgae. J Biosci Bioeng 2006; 101:87–96.

    Article  PubMed  CAS  Google Scholar 

  6. Newell CA. Plant transformation technology: Developments and applications. Mol Biotechnol 2000; 16:53–65.

    Article  PubMed  CAS  Google Scholar 

  7. Rochaix JD. Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genet 1995; 29:209–230.

    Article  PubMed  CAS  Google Scholar 

  8. Grossman AR, Harris EE, Hauser C et al. Chlamydomonas reinhardtii at the crossroads of genomics. Eukaryot Cell 2003; 2:1137–1150.

    Article  PubMed  CAS  Google Scholar 

  9. Harris EH. Chlamydomonas as a Model Organism. Rev Plant Physiol Plant Mol Biol 2001; 52:363–406.

    Article  CAS  Google Scholar 

  10. Merchant SS, Prochnik SE, Vallon O et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 2007; 318:245–250.

    Article  PubMed  CAS  Google Scholar 

  11. Raven JA, Allen JF. Genomics and chloroplast evolution: what did cyanobacteria do for plants? Genome Biol 2003; 4:209–213.

    Article  PubMed  Google Scholar 

  12. Mattoo A, Giardi MT, Raskind A et al. Dynamic metabolism of photosystem II reaction center proteins and pigments. A review. Physiol Plant 1999; 107:454–461.

    Article  CAS  Google Scholar 

  13. Maliga P. Plastid transformation in higher plants. Annu Rev Plant Biol 2004; 55:289–313.

    Article  PubMed  CAS  Google Scholar 

  14. Daniell H et al. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 1998; 16:345–343.

    Article  PubMed  CAS  Google Scholar 

  15. Lutz KA et al. Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol 2001; 125:1585–1590.

    Article  PubMed  CAS  Google Scholar 

  16. DeGray G et al. Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 2001; 127:852–862.

    Article  PubMed  CAS  Google Scholar 

  17. Kota M et al. Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci USA 1999; 96:1840–1845.

    Article  PubMed  CAS  Google Scholar 

  18. McBride KE et al. Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Bio/Technology 1995; 13:362–365.

    Article  PubMed  CAS  Google Scholar 

  19. Daniell H, Khan MS, Allison L. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. TRENDS in Plant Science 2002; 7:84–91.

    Article  PubMed  CAS  Google Scholar 

  20. Staub JM et al. High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 2000; 18:333–338.

    Article  PubMed  CAS  Google Scholar 

  21. De Cosa B, Moar W, Lee S-B et al. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 2001; 19:71–74.

    Article  Google Scholar 

  22. Nakashita H, Arai Y, Shikanai T et al. Introduction of bacterial metabolism into higher plants by polycistronic transgene expression. Biosci Biotechnol Biochem 2001; 65:1688–1691.

    Article  PubMed  CAS  Google Scholar 

  23. Lössl A, Eibl C, Harloff HJ et al. Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep 2003; 21:891–899.

    PubMed  Google Scholar 

  24. Arai Y, Shikanai T, Doi Y et al. Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant Cell Physiol 2004; 45:1176–1184.

    Article  PubMed  CAS  Google Scholar 

  25. Wurbs D, Ruf S, Bock R. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 2007; 49:276–288.

    Article  PubMed  CAS  Google Scholar 

  26. Sidorov VA, Kasten D, Pang S-Z et al. Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 1999; 19:209–216.

    Article  PubMed  CAS  Google Scholar 

  27. Ruf S, Hermann M, Berger IJ et al. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 2001; 19:870–875.

    Article  PubMed  CAS  Google Scholar 

  28. Dufourmantel N, Pelissier B, Garcon F et al. Generation of fertile transplastomic soybean. Plant Mol Biol 2004; 55:479–489.

    Article  PubMed  CAS  Google Scholar 

  29. Kumar S, Dhingra A, Daniell H. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots and leaves confers enhanced salt tolerance. Plant Physiol 2004; 136:2843–2854.

    Article  PubMed  CAS  Google Scholar 

  30. Lelivelt CLC, McCabe MS, Newell CA et al. Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 2005; 58:763–774.

    Article  PubMed  CAS  Google Scholar 

  31. Kanamoto H, Yamashita A, Asao H et al. Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic Res 2006; 15:205–217.

    Article  PubMed  CAS  Google Scholar 

  32. Nugent GD, Coyne S, Nguyen TT et al. Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake into protolasts. Plant Sci 2006; 170:135–142.

    Article  CAS  Google Scholar 

  33. Ellstrand NC. When transgenes wander, should we worry? Plant Physiol 2001; 125:1543–1545.

    Article  PubMed  CAS  Google Scholar 

  34. Ellstrand NC. Current knowledge of gene flow in plants: implications for transgene flow. Philos Trans R Soc Lond B Biol Sci 2003; 358:1163–1170.

    Article  PubMed  Google Scholar 

  35. Ruf S, Karcher D, Bock R. Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci USA 2007; 104:6998–7002.

    Article  PubMed  CAS  Google Scholar 

  36. Boynton JE, Gillham NW, Harris EH et al. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 1988; 240:1534–1538.

    Article  PubMed  CAS  Google Scholar 

  37. Klein TM, Wolf ED, Wu R et al. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 1987; 327:70–73.

    Article  CAS  Google Scholar 

  38. Przibilla E, Heiss S, Johanningmeier U et al. Site-specific mutagenesis of the D1 subunit of Photosystem II in wildtype Chlamydomonas. Plant Cell 1991; 3:169–174.

    Article  PubMed  CAS  Google Scholar 

  39. Newman SM, Gillham NW, Harris EH et al. Targeted disruption of chloroplast genes in Chlamydomonas reinhardtii. Mol Gen Genet. 1991; 230:65–74.

    Article  PubMed  CAS  Google Scholar 

  40. Goldschmidt-Clermont M. Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of Chlamydomonas. Nucleic Acids Res 1991; 19:4083–4089.

    Article  PubMed  CAS  Google Scholar 

  41. Bateman JM, Purton S. Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker. Mol Gen Genet 2000; 263:404–410.

    Article  PubMed  CAS  Google Scholar 

  42. Lapidot M, Raveh D, Sivan A et al. Stable chloroplast transformation of the unicellular red alga Porphyridium species. Plant Physiol 2002; 129:7–12.

    Article  PubMed  CAS  Google Scholar 

  43. Doetsch NA, Favreau MR, Kuscuoglu N et al. Chloroplast transformation in Euglena gracilis: splicing of a group III twintron transcribed from a transgenic psbK operon. Curr Genet 2001; 39:49–60.

    Article  PubMed  CAS  Google Scholar 

  44. Blowers AD, Bogorad L, Shark KB et al. Studies on Chlamydomonas chloroplast transformation: foreign DNA can be stably maintained in the chromosome. Plant Cell 1989; 1:123–132.

    Article  PubMed  CAS  Google Scholar 

  45. Blowers AD, Ellmore GS, Klein U et al. Transcriptional analysis of endogenous and foreign genes in chloroplast transformants of Chlamydomonas. Plant Cell 1990; 2:1059–1070.

    Article  PubMed  CAS  Google Scholar 

  46. Ishikura K, Takaoka Y, Kato K et al. Expression of a foreign gene in Chlamydomonas reinhardtii chloroplast. J Biosci Bioeng 1999; 87:307–314.

    Article  PubMed  CAS  Google Scholar 

  47. Minko I, Holloway SP, Nikaido S et al. Renilla luciferase as a vital reporter for chloroplast gene expression in Chlamydomonas. Mol Gen Genet 1999; 262:421–425.

    Article  PubMed  CAS  Google Scholar 

  48. Franklin S, Ngo B, Efuet E et al. Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant J 2002; 30:733–744.

    Article  PubMed  CAS  Google Scholar 

  49. Mayfield SP, Franklin SE, Lerner RA. Expression and assembly of fully active antibody in algae. Proc Natl Acad Sci USA 2003; 100:438–442.

    Article  PubMed  CAS  Google Scholar 

  50. Mayfield SP, Schultz J. Development of a luciferase reporter gene, luxCt, for Chlamydomonas reinhardtii chloroplast. Plant J 2004; 37:449–458.

    Article  PubMed  CAS  Google Scholar 

  51. Salvador ML, Suay L, Anthonisen IL et al. Changes in the 5′-untranslated region of the rbcL gene accelerate transcript degradation more than 50-fold in the chloroplast of Chlamydomonas reinhardtii. Curr Genet 2004; 45:176–182.

    Article  PubMed  CAS  Google Scholar 

  52. Klein U, Salvador ML, Bogorad L. Activity of the Chlamydomonas chloroplast rbcL gene promoter is enhanced by a remote sequence element. Proc Natl Acad Sci USA 1994; 91:10819–10823.

    Article  PubMed  CAS  Google Scholar 

  53. Suay L, Salvador ML, Abesha E et al. Specific roles of 5′ RNA secondary structures in stabilizing transcripts in chloroplasts. Nucleic Acids Res 2005; 33:4754–4761.

    Article  PubMed  CAS  Google Scholar 

  54. Klein U, De Camp JD, Bogorad L. Two types of chloroplast gene promoters in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 1992; 89:3453–3457.

    Article  PubMed  CAS  Google Scholar 

  55. Eberhard S, Drapier D, Wollman FA. Searching limiting steps in the expression of chloroplast encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. Plant J 2002; 31:149–160.

    Article  PubMed  CAS  Google Scholar 

  56. Barnes D, Franklin S, Schultz J et al. Contribution of 5′-and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Genet Genomics 2005; 274:625–636.

    Article  PubMed  CAS  Google Scholar 

  57. Mayfield SP, Manuell AL, Chen S et al. Chlamydomonas reinhardtii chloroplasts as protein factories. Curr Opin Biotechnol 2007; 18:126–133.

    Article  PubMed  CAS  Google Scholar 

  58. Griesbeck C, Kobl I, Heitzer M. Chlamydomonas reinhardtii: a protein expression system for pharmaceutical and biotechnological proteins. Mol Biotechnol 2006; 34:213–223.

    Article  PubMed  CAS  Google Scholar 

  59. Fukusaki EI, Nishikawa T, Kato K et al. Introduction of the Archaebacterial Geranylgeranyl Pyrophosphate Synthase Gene into Chlamydomonas reinhardtii chloroplast. J Biosci Bioeng 2003; 95:283–287.

    PubMed  CAS  Google Scholar 

  60. Sun M, Qian K, Su N et al. Foot and mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett 2003; 25:1087–1092.

    Article  PubMed  CAS  Google Scholar 

  61. Mayfield SP, Franklin SE. Expression of human antibodies in eukaryotic micro-algae. Vaccine 2005; 23:1828–1832.

    Article  PubMed  CAS  Google Scholar 

  62. Su ZL, Qian KX, Tan CP et al. Recombination and heterologous expression of allophycocyanin gene in the chloroplast of Chlamydomonas reinhardtii. Acta Biochim Biophys Sin (Shanghai) 2005; 37:709–712.

    Article  CAS  Google Scholar 

  63. Zhang YK, Shen GF, Ru BG. Survival of human metallothioneine-2 transplastomic Chlamydomonas reinhardtii to ultraviolet B exposure. Acta Biochim Biophys Sin (Shanghai) 2006; 38:187–193.

    Article  CAS  Google Scholar 

  64. Matsuo T, Onai K, Okamoto K et al. Real-time monitoring of chloroplast gene expression by a luciferase reporter: evidence for nuclear regulation of chloroplast circadian period. Mol Cell Biol 2006; 26:863–870.

    Article  PubMed  CAS  Google Scholar 

  65. Yang Z, Li Y, Chen F et al. Expression of human soluble TRAIL in Chlamydomonas reinhardtii chloroplast. Chin Sci Bull 2006; 51:1703–1709.

    Article  CAS  Google Scholar 

  66. Kato K, Marui T, Kasai S et al. Artificial control of transgene expression in Chlamydomonas reinhardtii chloroplast using the lac regulation system from Escherichia coli. J Biosci Bioeng 2007; 104:207–213.

    Article  PubMed  CAS  Google Scholar 

  67. He DM, Qian KX, Shen GF et al. Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chloroplasts. Colloids Surf B Biointerfaces 2007; 55:26–30.

    Article  PubMed  CAS  Google Scholar 

  68. Wang X, Brandsma M, Tremblay R et al. A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65). BMC Biotechnol 2008; 8:87–89.

    Article  PubMed  Google Scholar 

  69. Han S, Hu Z, Lei A. Expression and function analysis of the metallothionein-like (MT-like) gene from Festuca rubra in Chlamydomonas reinhardtii chloroplast. Sci China Ser C-Life Sci 2008; 51:1076–1081.

    Article  CAS  Google Scholar 

  70. Korhonen H, Pihlanto A. Food-derived bioactive peptides-opportunities for designing future foods. Curr Pharm 2003; 9:1297–1308.

    Article  CAS  Google Scholar 

  71. Korhonen H, Pihlanto A. Bioactive peptides: production and functionality. Int Dairy J 2006; 16:945–960.

    Article  CAS  Google Scholar 

  72. Hartmann R, Meisel H. Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol 2007; 18:163–169.

    Article  PubMed  CAS  Google Scholar 

  73. DeGray G, Rajasekaran K, Smith F et al. Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 2001; 127:852–862.

    Article  PubMed  CAS  Google Scholar 

  74. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415:389–395.

    Article  PubMed  CAS  Google Scholar 

  75. Jacob L, Zasloff M. Potential therapeutic applications of magainins and other antimicrobial agents of animal origin: antimicrobial Peptides. Ciba Found Symp 1994; 186:197–223.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Johanningmeier, U., Fischer, D. (2010). Perspective for the Use of Genetic Transformants in Order to Enhance the Synthesis of the Desired Metabolites: Engineering Chloroplasts of Microalgae for the Production of Bioactive Compounds. In: Giardi, M.T., Rea, G., Berra, B. (eds) Bio-Farms for Nutraceuticals. Advances in Experimental Medicine and Biology, vol 698. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7347-4_11

Download citation

Publish with us

Policies and ethics