Nucleation Catalysis

Chapter

Abstract

Melting and solidification are reciprocal examples of first-order phase transformations, i.e., transformations exhibiting discontinuities in the first-order thermodynamic properties of the ‘parent’ and ‘daughter’ phases, such as the volume, entropy, and enthalpy. First-order phase changes can resist initiation—even from a highly supercooled or supersaturated metastable parent phase—as energetic barriers develop that inhibit the formation of viable embryos of the daughter phase, which once formed, can grow spontaneously. Stable nuclei require ordering of numerous atoms or molecules, composition change, creation of large interfacial area per unit volume, and elastic straining, all of which require the accumulation of ‘excess’ free energy. The additional free energy needed to accomplish nucleation is provided by thermodynamic fluctuations that momentarily allow a miniscule region of the metastable parent phase to depart significantly from its average order, composition, and free energy.

Keywords

Entropy Fatigue Titanium Crystallization Convection 

References

  1. 1.
    V.K. LaMer, Ind. Eng. Chem., 44 (1952) 1270.CrossRefGoogle Scholar
  2. 2.
    K.C. Russell, J. Chem. Phys., 50 (1969) 1809.CrossRefGoogle Scholar
  3. 3.
    J.L. Katz, J. Stat. Phys., 2 (1970) 137.CrossRefGoogle Scholar
  4. 4.
    M. Volmer, Z. Elektrochem., 35 (1929) 555.Google Scholar
  5. 5.
    M. Volmer and A. Weber, Z. Phys. Chem., 119, (1925) 277.Google Scholar
  6. 6.
    M. Volmer and H. Flood, Z. Phys. Chem., 170A (1934) 273.Google Scholar
  7. 7.
    L. Farkas, Z. Phys. Chem., 125, (1927) 239.Google Scholar
  8. 8.
    R. Becker and W. Döring, Ann. Phys., 24 (1935) 719.CrossRefGoogle Scholar
  9. 9.
    J.B. Zeldovich, Acta Physicochim., 18 (1943) 1.Google Scholar
  10. 10.
    J. Frenkel, Kinetic Theory of Liquids, Dover Publications, Inc., New York, NY, 1955, p. 176.Google Scholar
  11. 11.
    D. Turnbull, J. Chem. Phys., 20 (1952) 411.CrossRefGoogle Scholar
  12. 12.
    D. Turnbull, J. Phys. Chem. 18 (1950) 198.CrossRefGoogle Scholar
  13. 13.
    D. Turnbull and J.C. Fisher, J. Phys. Chem. 17 (1949) 71.CrossRefGoogle Scholar
  14. 14.
    K.F. Kelton and A.L. Greer, Nucleation in Condensed Matter, 15, Pergamon Materials Series, Elsevier BV, Holland, 2010.Google Scholar
  15. 15.
    G.S. Heffelfinger et al., Mol. Simul., 2 (1989) 393.CrossRefGoogle Scholar
  16. 16.
    A. Schmidt and V. Smirnov, TopCatal., 32 (2005) 71.Google Scholar
  17. 17.
    M.K. Harbola, Proc. Natl. Acad. Sci. USA, 89 (1992) 1036.CrossRefGoogle Scholar
  18. 18.
    D. Turnbull, J. Chem. Phys., 18 (1950) 198.CrossRefGoogle Scholar
  19. 19.
    M.E. Glicksman and W.J. Childs, Acta Metall., 10 (1962) 925.CrossRefGoogle Scholar
  20. 20.
    J.H. Perepezko and W.S. Tong, Phil. Trans. R. Soc. Lond. A, 361 (2003) 447.CrossRefGoogle Scholar
  21. 21.
    W. Yourgrau, A. van der Merwe and G. Raw, Treatise on Irreversible and Statistical Thermophysics, Dover Publications, New York, NY, 1982.Google Scholar
  22. 22.
    E.H. Kennard, Kinetic Theory of Gases, McGraw-Hill Book Company, New York, NY, 1938.Google Scholar
  23. 23.
    M.C. Flemings et al., AFS Trans., 70 (1962) 1029.Google Scholar
  24. 24.
    C. Vivès, Metall. Trans. B, 27 (1996) 445.CrossRefGoogle Scholar
  25. 25.
    M. Easton and D. St. John, Metall. Mater. Trans. A, 30 (2007) 1625.CrossRefGoogle Scholar
  26. 26.
    J.P. Perepezko, ‘Nucleation kinetics and grain refinement’, ASM Handbook, 15, American Society for Materials, Int., Materials Park, OH, 2008, p. 276.Google Scholar
  27. 27.
    C. Limmaneevichitr and W. Eidhed, Mater. Sci. Eng. A, 349 (2003) 197.CrossRefGoogle Scholar
  28. 28.
    E.B. Webb III, G.S. Grest, and D.R. Heine, Phys. Rev. Lett., 91 (2003) 236103.CrossRefGoogle Scholar
  29. 29.
    N.H. Fletcher, J. Chem Phys., 29 (1958) 572.CrossRefGoogle Scholar
  30. 30.
    N.H. Fletcher, J. Chem Phys., 31 (1958) 1136.CrossRefGoogle Scholar
  31. 31.
    N.H. Fletcher, J. Chem Phys., 38 (1958) 237.CrossRefGoogle Scholar
  32. 32.
    T.B. Blake and J.M. Haynes, J. Coll. Inter. Sci., 30 (1969) 421.CrossRefGoogle Scholar
  33. 33.
    J.C. Fisher, J.H. Holloman and D. Turnbull, J. Appl. Phys., 19 (1948) 775.CrossRefGoogle Scholar
  34. 34.
    G. Ghosh and G.B. Olsen, Acta Metall. Mater., 42 (1994) 3361.CrossRefGoogle Scholar
  35. 35.
    P. Sajkiewicz, J. Polym. Sci. B, 41 (2003) 68.CrossRefGoogle Scholar
  36. 36.
    W. Oldfield, Trans. ASM, 59 (1966) 945.Google Scholar
  37. 37.
    W.T. Kim, D.L. Zhang and B. Cantor, Metall. Trans. A, 22A (1991) 2487.Google Scholar
  38. 38.
    W.T. Kim and B. Cantor, J. Mater. Sci., 26 (1991) 2868.CrossRefGoogle Scholar
  39. 39.
    W.T. Kim and B. Cantor, Acta Metall., 40 (1992) 3339.CrossRefGoogle Scholar
  40. 40.
    W.T. Kim and B. Cantor, Acta Metall., 42 (1994) 3045.CrossRefGoogle Scholar
  41. 41.
    T.E. Quested and A.L. Greer, Acta Mater., 53 (2005) 2683.CrossRefGoogle Scholar
  42. 42.
    J. Szekely, Fluid Flow Phenomena in Metals Processing, Academic Press Ltd., New York, NY, 1979, 305.CrossRefGoogle Scholar
  43. 43.
    M.E. Glicksman, C.J. Paradies, G.T. Kim and R.N. Smith, ‘The effects of varying melt flow velocity on the grain fragmentation in a mushy zone’, Light Metals 1993, S.K. Das, Ed., The Minerals, Metals & Materials Society, Warrendale, PA, 1993, p. 779.Google Scholar
  44. 44.
    M.E. Glicksman, R.N. Smith, C.J. Paradies and P. Rao, ‘Grain refinement of castings via melt-flow interaction with the mushy zone’, Near-Net Shape Casting in the Minimills, I.V. Samarasekera, Ed., The University of British Columbia, Vancouver, BC, 1995, p. 217.Google Scholar
  45. 45.
    C.J. Paradies, M.E. Glicksman and R.N. Smith, Metall. Mater. Trans. A, 28A (1997) 875.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Materials Science and Engineering DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations