Advertisement

Knowledge Representation and Reasoning in Norm-Parameterized Fuzzy Description Logics

Conference paper

Abstract

The Semantic Web is an evolving extension of the World Wide Web in which the semantics of the available information are formally described, making it more machine-interpretable. The current W3C standard for SemanticWeb ontology languages, OWL, is based on the knowledge representation formalism of Description Logics (DLs). Although standard DLs provide considerable expressive power, they cannot express various kinds of imprecise or vague knowledge and thus cannot deal with uncertainty, an intrinsic feature of the real world and our knowledge. To overcome this deficiency, this chapter extends a standard Description Logic to a family of norm-parameterized Fuzzy Description Logics. The syntax to represent uncertain knowledge and the semantics to interpret fuzzy concept descriptions and knowledge bases are addressed in detail. The chapter then focuses on a procedure for reasoning with knowledge bases in the proposed Fuzzy Description Logics. Finally, we prove the soundness, completeness, and termination of the reasoning procedure

Keywords

Fuzzy Logic Description Logic Product Logic Fuzzy Concept Truth Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge, MA (2003)MATHGoogle Scholar
  2. 2.
    Baader, F., Sattler, U.: An overview of tableau algorithms for description logic. Studia Logica 69(1), 5–40 (2001)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284(5), 34–44 (2001). URL http://web.ebscohost.com/ehost/detail?vid=1&hid=102&sid=40d1a318-d0ac-41c6-9854-0ffde44a63eb%40sessionmgr109 CrossRefGoogle Scholar
  4. 4.
    Bobillo, F., Straccia, U.: A fuzzy description logic with product t-norm. In: Proceedings of the IEEE International Conference on Fuzzy Systems (Fuzz IEEE-07), pp. 652C–657. IEEE Computer Society (2007)Google Scholar
  5. 5.
    Brachman, R.J., Levesque, H.J.: The tractability of subsumption in frame-based description languages. In: Proceedings AAAI-1984, pp. 34–37. AAAI Press (1984)Google Scholar
  6. 6.
    Haase, P., Völker, J.: Ontology learning and reasoning - dealing with uncertainty and inconsistency. In: Proceedings of Uncertainty Reasoning for the Semantic Web, pp. 45–55 (2005)Google Scholar
  7. 7.
    Hájek, P.: Metamathematics of fuzzy logic. Kluwer (1998)MATHGoogle Scholar
  8. 8.
    Hájek, P.: Making fuzzy description logics more expressive. Fuzzy Sets Syst. 154(1), 1–15 (2005)MATHCrossRefGoogle Scholar
  9. 9.
    Hájek, P.: What does mathematical fuzzy logic offer to description logic?, pp. 91–100. Fuzzy Logic and the Semantic Web, Capturing Intelligence. Elsevier (2006)Google Scholar
  10. 10.
    Hajek, P.: Fuzzy logic. In: The Stanford Encyclopedia of Philosophy. Standford University (2009). URL http://plato.stanford.edu/archives/spr2009/entries/logic-fuzzy/
  11. 11.
    Hollunder, B.: An alternative proof method for possibilistic logic and its application to terminological logics. International Journal of Approximate Reasoning 12(2), 85–109 (1995)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Horrocks, I.: Optimising tableaux decision procedures for description logics (1997). ANNOTE: AKA: Horrocks97bGoogle Scholar
  13. 13.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The making of a web ontology language. J. of Web Semantics 1(1), 7–26 (2003)Google Scholar
  14. 14.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive description logics. Logic Journal of the IGPL 8(3), 239–264 (2000)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hsueh-Ieng, P.: Uncertainty management for description logic-based ontologies. Ph.D. thesis, University of Concordia (2008)Google Scholar
  16. 16.
    Jaeger, M.: Probabilistic reasoning in terminological logics. In: Proc. of the 4th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR94), pp. 305–316 (1994)Google Scholar
  17. 17.
    Koller, D., Levy, A., Pfeffer, A.: P-classic: A tractable probabilistic description logic. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97), pp. 390–397 (1997)Google Scholar
  18. 18.
    Laskey, K.J., Laskey, K.B., Costa, P.C.G., Kokar, M.M., Martin, T., Lukasiewicz, T.: W3c incubator group report. Tech. Rep. http://www.w3.org/2005/Incubator/urw3/wiki/DraftFinalReport, W3C (05 March, 2008)
  19. 19.
    Lukasiewicz, T.: Expressive probabilistic description logics. Artificial Intelligence 172(6/7), 852–883 (2008)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Martin-Recuerda, F., Robertson, D.: Discovery and uncertainty in semantic web services. In: Proceedings of Uncertainty Reasoning for the Semantic Web, p. 188 (2005)Google Scholar
  21. 21.
    McGuinness, D.L., van Harmelen, F.: Owl web ontology language overview (2004). URL http://www.w3.org/TR/owl-features/
  22. 22.
    Montagna, F., Marini, C., Simi, G.: Product logic and probabilistic ulam games. Fuzzy Sets Syst. 158(6), 639–651 (2007). DOI http://dx.doi.org/10.1016/j.fss.2006.11.007MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: Owl 2 web ontology language profiles (2009). URL http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules
  24. 24.
    Novák, V., Perfilieva, I., Mockor, J.: Mathematical principles of fuzzy logic. Dodrecht: Kluwer Academic (1999)MATHGoogle Scholar
  25. 25.
    Sánchez, D., Tettamanzi, A.G.: Fuzzy quantification in fuzzy description logics, pp. 135–160. Fuzzy Logic and the Semantic Web, Capturing Intelligence. Elsevier (2006)Google Scholar
  26. 26.
    Spencer, B.: ALCAS: An ALC Reasoner for CAS. http://www.cs.unb.ca/ bspencer/cs6795swt/alcas.prolog (2006). URL http://www.cs.unb.ca/~bspencer/cs6795swt/alcas.prolog
  27. 27.
    Stamou, G., van Ossenbruggen, J., Pan, J.Z., Schreiber, G.: Multimedia annotations on the semantic web. IEEE MultiMedia 13, 86–90 (2006). DOI http://doi.ieeecomputersociety.org/10.1109/MMUL.2006.15CrossRefGoogle Scholar
  28. 28.
    Stevens, R., Aranguren, M.E., Wolstencroft, K., Sattlera, U., Drummond, N., Horridge, M., Rectora, A.: Using owl to model biological knowledge. International Journal of Human-Computer Studies 65(7), 583–594 (2007)CrossRefGoogle Scholar
  29. 29.
    Stoilos, G., Stamou, G., Pan, J.Z., Tzouvaras, V., Horrocks, I.: Reasoning with very expressive fuzzy description logics. Journal of Artificial Intelligence Research 30, 273–320 (2007)MATHMathSciNetGoogle Scholar
  30. 30.
    Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intelligence Research 14, 137–166 (2001)MATHMathSciNetGoogle Scholar
  31. 31.
    Straccia, U.: Towards a fuzzy description logic for the semantic web (preliminary report). In: 2nd European Semantic Web Conference (ESWC-05), Lecture Notes in Computer Science, pp. 167–181. Springer Verlag (2005)Google Scholar
  32. 32.
    Tresp, C.B., Molitor, R.: A description logic for vague knowledge. In: Proc. of the 13th Eur. Conf. on Artificial Intelligence (ECAI’98), pp. 361–365 (1998)Google Scholar
  33. 33.
    Yen, J.: Generalizing term subsumption languages to fuzzy logic. In: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pp. 472–477 (1991)Google Scholar
  34. 34.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Zhao, J.: Uncertainty and Rule Extensions to Description Logics and Semantic Web Ontologies, chap. 1, p. 22. Advances in Semantic Computing. Technomathematics Research Foundation (2010). AcceptedGoogle Scholar
  36. 36.
    Zhao, J., Boley, H.: A Reasoning Procedure for the Fuzzy Description Logic fALCHIN. In: Proc. Second Canadian Semantic Web Working Symposium, Kelowna, pp. 46–59 (2009)Google Scholar
  37. 37.
    Zhao, J., Boley, H., Du,W.: Knowledge Representation and Consistency Checking in a Norm-Parameterized Fuzzy Description Logic. In: D.S. Huang, K.H. Jo, H.H. Lee, H.J. Kang, V. Bevilacqua (eds.) ICIC (2), Lecture Notes in Computer Science, vol. 5755, pp. 111–123. Springer (2009). URL http://dx.doi.org/10.1007/978-3-642-04020-7

Copyright information

© Springer US 2010

Authors and Affiliations

  1. 1.Faculty of Computer ScienceUniversity of New BrunswickFrederictonCanada
  2. 2.Institute for Information TechnologyNational Research Council of CanadaFrederictonCanada

Personalised recommendations