Incremental Query Rewriting with Resolution

  • Alexandre RiazanovEmail author
  • Marcelo A. T. Aragão
Conference paper


We address the problem of semantic querying of relational databases (RDB) modulo knowledge bases using very expressive knowledge representation formalisms, such as full first-order logic or its various fragments. We propose to use a resolution-based first-order logic (FOL) reasoner for computing schematic answers to deductive queries, with the subsequent translation of these schematic answers to SQL queries which are evaluated using a conventional relational DBMS. We call our method incremental query rewriting, because an original semantic query is rewritten into a (potentially infinite) series of SQL queries. In this chapter, we outline the main idea of our technique – using abstractions of databases and constrained clauses for deriving schematic answers, and provide completeness and soundness proofs to justify the applicability of this technique to the case of resolution for FOL without equality. The proposed method can be directly used with regular RDBs, including legacy databases. Moreover, we propose it as a potential basis for an efficient Web-scale semantic search technology.


Relational Database Schematic Answer Conjunctive Query Deductive Database Semantic Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    RIF Basic Logic Dialect.
  2. 2.
    The Rule Markup Initiative Web Site.
  3. 3.
    W3C SWRL Submission:.
  4. 4.
    A. Ranganathan, Liu, Z.: Information Retrieval from Relational Databases using Semantic Queries. In: Proc. ACM CIKM, pp. 820–821 (2006)Google Scholar
  5. 5.
    Arens, Y., Chee, C.Y., Hsu, C.N., Knoblock, C.A.: Retrieving and Integrating Data from Multiple Information Sources. International Journal on Intelligent and Cooperative Information Systems 2(2), 127–158 (1993)CrossRefGoogle Scholar
  6. 6.
    Bachmair, L., Ganzinger, H.: Resolution Theorem Proving. In: Handbook of Automated Reasoning, vol. I (2001)Google Scholar
  7. 7.
    Bizer, C.: D2RQ - Treating Non-RDF Databases as Virtual RDF Graphs. In: ISWC 2004Google Scholar
  8. 8.
    Boley, H.: The RuleML Family of Web Rule Languages. In: PPSWR06 (2006)Google Scholar
  9. 9.
    Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema. In: ISWC, pp. 54–68 (2002)Google Scholar
  10. 10.
    Bürckert, H.J., Nutt, W.: On Abduction and Answer Generation through Constrained Resolution. Tech. Rep. DFKI RR-92-51 (1992)Google Scholar
  11. 11.
    Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.: MASTRO-I: Efficient Integration of Relational Data through DL Ontologies. In: DL-07 (2007)Google Scholar
  12. 12.
    Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable Description Logics for Ontologies. In: AAAI’05, pp. 602–607 (2005)Google Scholar
  13. 13.
    Chen, C.M., Haarslev, V., Wang, J.Y.: LAS: Extending Racer by a Large Abox Store. In: DL-2005Google Scholar
  14. 14.
    Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Patel, C., Schonberg, E., Srinivas, K., Sun, X.: Efficient reasoning on large SHIN Aboxes in relational databases (2007). (unpublished)Google Scholar
  15. 15.
    Dou, D., LePendu, P., Kim, S., Qi, P.: Integrating Databases into the Semantic Web through an Ontology-based Framework. In: International Workshop on Semantic Web and Databases at ICDE 2006 (2006)Google Scholar
  16. 16.
    Dou, D., McDermott, D., Qi, P.: Ontology Translation on the Semantic Web. Journal of Data Semantics 2, 35–37 (2005)Google Scholar
  17. 17.
    Guo, Y., Heflin, J., Pan, Z.: An Evaluation of Knowledge Base Systems for Large OWL Datasets. In: ISWC 2004, pp. 613–627 (2004)Google Scholar
  18. 18.
    Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The Instance Store: Description Logic Reasoning with Large Numbers of Individuals. In: DL’04 (2004)Google Scholar
  19. 19.
    Jaffar, J., Maher, M.J.: Constraint Logic Programming: a Survey. Journal of Logic Programming 19(20), 503–581 (1994)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Motik, B.: Reasoning in Description Logics using Resolution and Deductive Databases. PhD Thesis (2006)Google Scholar
  21. 21.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-Based Theorem Proving. In: A. Robinson, A. Voronkov (eds.) Handbook of Automated Reasoning, vol. I (2001)Google Scholar
  22. 22.
    O’Connor, M., Shankar, R., Tu, S., Nyulas, C., Das, A., Musen, M.: Efficiently Querying Relational Databases Using OWL and SWRL. In: RR 2007 (2007)Google Scholar
  23. 23.
    O’Connor, M., Shankar, R., Tu, S., Nyulas, C., Parrish, D., Musen, M., Das, A.: Using Semantic Web Technologies for Knowledge-Driven Querying of Biomedical Data. In: AIME 07 (2007)Google Scholar
  24. 24.
    Pan, Z., Heflin, J.: DLDB: Extending Relational Databases to Support Semantic Web Queries. In: Workshop on Practical and Scaleable Semantic Web Systems, ISWC 2003 (2003)Google Scholar
  25. 25.
    Paton, N.W., Stevens, R., Baker, P., Goble, C.A., Bechhofer, S., Brass, A.: Query Processing in the TAMBIS Bioinformatics Source Integration System. In: SSDBM (1999)Google Scholar
  26. 26.
    Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill (2003)zbMATHGoogle Scholar
  27. 27.
    Riazanov, A., Voronkov, A.: The Design a nd Implementation of Vampire. AI Communications 15(2-3), 91–110 (2002)zbMATHGoogle Scholar
  28. 28.
    Rishe, N.: SemanticSQL: A Semantic Wrapper for Relational Databases. (2004). (white paper)
  29. 29.
    Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall (2003)Google Scholar
  30. 30.
    Sutcliffe, G., Suttner, C.: The TPTP Problem Library. TPTP v. 2.4.1. Tech. rep., University of Miami (2001)Google Scholar
  31. 31.
    Tammet, T.: Gandalf. Journal of Automated Reasoning 18(2), 199–204 (1997)CrossRefGoogle Scholar
  32. 32.
    Tammet, T., Kadarpik, V., Haav, H.M., Kaaramees, M.: A Rule-based Approach to Web-based (Database) Application Development. In: 7th International Baltic Conference on Databases and Information Systems, pp. 202–208 (2006)Google Scholar

Copyright information

© Springer US 2010

Authors and Affiliations

  1. 1.RuleMLMontrealCanada
  2. 2.The University of ManchesterManchesterEngland

Personalised recommendations