Spitzer’s View of Galaxies in the High-Redshift Universe

Conference paper


One of the most important observations made by the Spitzer Space Telescope has been the detection of luminous galaxies back to the era of reionization (z ~ 8), when the universe was less than 700 million years old. The key advance made by Spitzer imaging isthe ability, for the first time, to sample the redshifted rest-frame visible light of these galaxies. When combined with broadband multi-wavelength data, Spitzer observations can be fit to stellar population synthesis models to determine the spectral energy distribution of these galaxies and to constrain their stellar masses and ages and their star formation histories. As a result, there is evidence that most of the stellar mass of these galaxies formed at even higher redshifts (z > 10 to 12) and that asignificant number of galaxies should exist in this region.Searches for galaxies at z ~ 9 to 10 continue. Spitzer observations of massive lensing clusters have also played a pivotal role in this study. The first IRAC detection of a z >6 galaxy came from such observations. Since most of these results were obtained with Spitzer/IRAC 3.6/4.5 μm bands, the Spitzer Warm Mission, when combined with future HST/WFC3 observations, will provide a unique opportunity to obtain the first complete census of the assembly of stellar mass as a function of cosmic time back to the era of reionization, yielding unique information on galaxy formation in the early universe.


Star Formation Stellar Mass Star Formation Rate Spectral Energy Distribution Star Formation History 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bouwens, R.J., et al. 2009, arXiv:0912.4263Google Scholar
  2. 2.
    Bradley, L.D., et al. 2008, ApJ, 678,647CrossRefADSGoogle Scholar
  3. 3.
    Bruzual, G., Charlot, S. 1993, ApJ, 405,538CrossRefADSGoogle Scholar
  4. 4.
    Bruzual, G., Charlot, S. 2003, MNRAS 344, 1000CrossRefADSGoogle Scholar
  5. 5.
    Chary, R., et al. 2008, ApJ, 681,53CrossRefADSGoogle Scholar
  6. 6.
    Cooray, A., et al. 2007, ApJ, 659, L91CrossRefADSGoogle Scholar
  7. 7.
    Dow-Hygelund, C.C., et al. 2005, ApJ, 630, L137CrossRefADSGoogle Scholar
  8. 8.
    Egami, E., et al. 2004, ApJ, 618, L5CrossRefADSGoogle Scholar
  9. 9.
    Eyles, L.P., et al. 2005, MNRAS 364, 443ADSGoogle Scholar
  10. 10.
    Fazio, G.G., et al. 2004, ApJS, 154,10CrossRefADSGoogle Scholar
  11. 11.
    Gonzalez, V., et al. 2010, ApJ, 713,115CrossRefADSGoogle Scholar
  12. 12.
    Kashlinsky, A., et al. 2005, Nature, 438, 45CrossRefADSGoogle Scholar
  13. 13.
    Kneib, J.P., et al. 2004, ApJ, 607,697CrossRefADSGoogle Scholar
  14. 14.
    Kashlinsky, A. 2005, PhR, 409,361ADSGoogle Scholar
  15. 15.
    Labbé, I., et al. 2006, ApJ, 649, L67CrossRefADSGoogle Scholar
  16. 16.
    Labbé, I., et al. 2009, arXiv:0911.1356Google Scholar
  17. 17.
    Labbé, I., et al. 2010, ApJ, 708, L26CrossRefADSGoogle Scholar
  18. 18.
    Ota, K., et al. 2008, ApJ, 677,12CrossRefADSGoogle Scholar
  19. 19.
    Simpson, C., Eisenhardt, P. 1999, PASP 97, 451Google Scholar
  20. 20.
    Stark, D.P., et al. 2009, ApJ, 697,1493CrossRefADSGoogle Scholar
  21. 21.
    Steidel, C., et al. 1996, ApJ, 462, L17CrossRefADSGoogle Scholar
  22. 22.
    Steidel, C., et al. 1999, ApJ, 519,1CrossRefADSGoogle Scholar
  23. 23.
    Thompson, R., et al. 2007, ApJ, 666,658CrossRefADSGoogle Scholar
  24. 24.
    Werner, M., et al. 2004, ApJS 154,1CrossRefADSGoogle Scholar
  25. 25.
    Wright, E. L., Eisenhardt, P., Fazio, G. 1993, BAAS 268, 93Google Scholar
  26. 26.
    Yan, H., et al. 2005, ApJ 634,109CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Harvard Smithsonian Center for AstrophysicsCambridgeUSA

Personalised recommendations