Skip to main content

Stereoselectivity of the Biosynthesis of Norlignans and Related Compounds

  • Chapter
  • First Online:
The Biological Activity of Phytochemicals

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 41))

Abstract

Norlignans, lignans, and neolignans are biosynthesized by coupling two units of phenylpropanoid monomers including p-hydroxycinnamyl alcohols and allyl- and propenylphenols. Each molecule of the phenylpropanoid dimers is usually chiral, and naturally occurring norlignans, lignans, and neolignans are often optically active. The subunit compositions of norlignan synthase (hinokiresinol synthase) are known to control enantiomeric selectivity as well as cis/trans selectivity during norlignan formation. This contrasts sharply with the dirigent protein-mediated enantioselective control in lignan biosynthesis. Indeed, the dirigent protein is a unique asymmetric inducer that plays prominent roles in enantioselective lignan biosynthesis. Recently, however, enzymes that are involved in the subsequent metabolic steps, such as pinoresinol (/lariciresinol) reductase, were also found to play significant roles in the enantioselective formation of lignans. In this review, recent advances in the biosynthesis of norlignans, lignans, and neolignans are discussed in relation to enantioselective control mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40:347–369

    Article  CAS  Google Scholar 

  2. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  3. Dixon RA, Reddy MSS (2003) Biosynthesis of monolignols. Genomic and reverse genetic approaches. Phytochem Rev 2:289–306

    Article  CAS  Google Scholar 

  4. Ralph J, Lundquist K, Brunow G et al (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev 3:29–60

    Article  CAS  Google Scholar 

  5. Chiang VL (2006) Monolignol biosynthesis and genetic engineering of lignin in trees, a review. Environ Chem Lett 4:143–146

    Article  CAS  Google Scholar 

  6. Davin LB, Jourdes M, Patten AM et al (2008) Dissection of lignin macromolecular configuration and assembly: comparison to related biochemical processes in allyl/propenyl phenol and lignan biosynthesis. Nat Prod Rep 25:1015–1090

    Article  CAS  PubMed  Google Scholar 

  7. Umezawa T (2010) The cinnamate/monolignol pathway. Phytochem Rev 9:1–17

    Article  CAS  Google Scholar 

  8. Umezawa T (1997) Lignans. In: Higuchi T (ed) Springer series in wood science, biochemistry and molecular biology of wood. Springer, Berlin, pp. 181–194

    Google Scholar 

  9. Akiyama T, Magara K, Matsumoto Y et al (2000) Proof of the presence of racemic forms of arylglycerol-β-aryl ether structure in lignin: studies on the stereo structure of lignin by ozonation. J Wood Sci 46:414–415

    Article  CAS  Google Scholar 

  10. Moss GP (2000) Nomenclature of lignans and neolignans. Pure Appl Chem 72:1493–1523

    Article  CAS  Google Scholar 

  11. Umezawa T (2003) Diversity in lignan biosynthesis. Phytochem Rev 2:371–390

    Article  CAS  Google Scholar 

  12. Davin L, Lewis NG (2003) An historical perspective on lignan biosynthesis: monolignol, allylphenol and hydroxycinnamic acid coupling and downstream metabolism. Phytochem Rev 2:257–288

    Article  CAS  Google Scholar 

  13. Suzuki S, Umezawa T (2007) Biosynthesis of lignans and norlignans. J Wood Sci 53:273–284

    Article  CAS  Google Scholar 

  14. Yamamura M, Suzuki S, Hattori T et al (2010) Subunit composition of hinokiresinol synthase controls enantiomeric selectivity in hinokiresinol formation. Org Biomol Chem 8:1106–1110

    Article  CAS  PubMed  Google Scholar 

  15. Hirose Y, Oishi N, Nagaki H et al (1965) The structure of hinokiresinol. Tetrahedron Lett 41:3665–3668

    Article  Google Scholar 

  16. Beracierta AP, Whiting DA (1978) Stereoselective total syntheses of the (±)-di-O-methyl ethers of agatharesinol, sequirin-A, and hinokiresinol, and of (±)-tri-O-methylsequrin-E, characteristic norlignans of Coniferae. J Chem Soc Perkin Trans 1:1257–1263

    Article  Google Scholar 

  17. Birch AJ, Liepa AJ (1978) Biosynthesis. In: Rao CBS (ed) Chemistry of lignans. Andhra University Press, Andhra Pradesh, pp 307–327

    Google Scholar 

  18. Erdtman H, Harmatha J (1979) Phenolic and terpenoid heartwood constituents of Libocedrus yateensis. Phytochemistry 18:1495–1500

    Article  CAS  Google Scholar 

  19. Suzuki S, Umezawa T, Shimada M (2001) Norlignan biosynthesis in Asparagus officinalis L.: the norlignan originates from two nonidentical phenylpropane units. J Chem Soc Perkin Trans 1:3252–3257

    Google Scholar 

  20. Suzuki S, Nakatsubo T, Umezawa T et al (2002) First in vitro norlignan formation with Asparagus officinalis enzyme preparation. Chem Commun 10:1088–1089

    Article  Google Scholar 

  21. Suzuki S, Yamamura M, Shimada M et al (2004) A heartwood norlignan, (E)-hinokiresinol, is formed from 4-coumaryl 4-coumarate by a Cryptomeria japonica enzyme preparation. Chem Commun:2838–2839

    Google Scholar 

  22. Suzuki S, Yamamura M, Hattori T et al (2007) The subunit composition of hinokiresinol synthase controls geometrical selectivity in norlignan formation. Proc Natl Acad Sci USA 104:21008–21013

    Article  CAS  PubMed  Google Scholar 

  23. Kahrel Y, Takahashi S, Yamashita S et al (2006) Manipulation of prenyl chain length determination mechanism of cis-prenyltransferases. FEBS J 273:647–657

    Article  Google Scholar 

  24. Iijima Y, Gang DR, Fridman E et al (2004) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 134:370–379

    Article  CAS  PubMed  Google Scholar 

  25. Wise ML, Croteau R (1999) Monoterpene biosynthesis. In: Barton D, Nakanishi K, Meth-Cohn O (eds) Comprehensive natural products chemistry, vol. 2. Elsevier Science, Oxford, pp 97–153

    Chapter  Google Scholar 

  26. Minami E, Taki M, Takaishi S et al (2000) Stereochemistry of cis- and trans-hinokiresinol and their estrogen-like activity. Chem Pharm Bull 48:389–392

    CAS  PubMed  Google Scholar 

  27. Jeong SJ, Higuchi R, Ono M et al (2003) cis-Hinokiresinol, a norlignan from Anemarrhene asphodeloides, inhibits angiogenic response in vitro and in vivo. Biol Pharm Bull 26:1721–1724

    Article  CAS  PubMed  Google Scholar 

  28. Davin LB, Wang H-B, Crowell AL et al (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–366

    Article  CAS  PubMed  Google Scholar 

  29. Gang DR, Costa MA, Fujita M et al (1999) Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem Biol 6:143–151

    Article  CAS  PubMed  Google Scholar 

  30. Katayama T, Davin LB, Lewis NG (1992) An extraordinary accumulation of (-)-pinoresinol in cell-free extracts of Forsythia intermedia: evidence for enantiospecific reduction of (+)-pinoresinol. Phytochemistry 31:3875–3881

    Article  CAS  PubMed  Google Scholar 

  31. Chu A, Dinkova A, Davin LB et al (1993) Stereospecificity of (+)-pinoresinol and (+)-lariciresinol reductases from Forsythia intermedia. J Biol Chem 268:27026–27033

    CAS  PubMed  Google Scholar 

  32. Umezawa T, Kuroda H, Isohata T et al (1994) Enantioselective lignan synthesis by cell-free extracts of Forsythia koreana. Biosci Biotech Biochem 58:230–234

    Article  CAS  Google Scholar 

  33. Umezawa T, Shimada M (1996) Formation of the lignan (+)-secoisolariciresinol by cell-free extracts of Arctium lappa. Biosci Biotech Biochem 60:736–737

    Article  CAS  Google Scholar 

  34. Dinkova-Kostova AT, Gang DR, Davin LB et al (1996) (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia. J Biol Chem 271:29473–29482

    Article  CAS  PubMed  Google Scholar 

  35. Katayama T, Masaoka T, Yamada H (1997) Biosynthesis and stereochemistry of lignans in Zanthoxylum ailanthoides I. (+)-Lariciresinol formation by enzymatic reduction of (±)-pinoresinols. Mokuzai Gakkaishi 43:580–588

    CAS  Google Scholar 

  36. Suzuki S, Umezawa T, Shimada M (1998) Stereochemical difference in secoisolariciresinol formation between cell-free extracts from petioles and from ripening seeds of Arctium lappa L. Biosci Biotech Biochem 62:1468–1470

    Article  CAS  Google Scholar 

  37. Fujita M, Gang DR, Davin LB et al (1999) Recombinant pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions. J Biol Chem 274:618–627

    Article  CAS  PubMed  Google Scholar 

  38. Xia Z-Q, Costa MA, Proctor J et al (2000) Dirigent-mediated podophyllotoxin biosynthesis in Linum flavum and Podophyllum peltatum. Phytochemistry 55:537–549

    Article  CAS  PubMed  Google Scholar 

  39. Okunishi T, Umezawa T, Shimada M (2001) Isolation and enzymatic formation of lignans of Daphne genkwa and Daphne odora. J Wood Sci 47:383–388

    Article  CAS  Google Scholar 

  40. Min T, Kasahara H, Bedgar DL et al (2003) Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. J Biol Chem 278:50714–50723

    Article  CAS  PubMed  Google Scholar 

  41. von Heimendahl CBI, Schäfer KM, Eklund P et al (2005) Pinoresinol-lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum. Phytochemistry 66:1254–1263

    Article  Google Scholar 

  42. Hemmati S, Schmidt TJ, Fuss E (2007) (+)-Pinoresinol/(-)-lariciresinol reductase from Linum perenne himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett 581:603–610

    Article  CAS  PubMed  Google Scholar 

  43. Umezawa T, Davin LB, Yamamoto E et al (1990) Lignan biosynthesis in Forsythia species. J Chem Soc Chem Commun:1405–1408

    Google Scholar 

  44. Umezawa T, Davin LB, Lewis NG (1991) Formation of lignans (-)-secoisolariciresinol and (-)-matairesinol with Forsythia intermedia cell-free extracts. J Biol Chem 266:10210–10217

    CAS  PubMed  Google Scholar 

  45. Okunishi T, Sakakibara N, Suzuki S et al (2004) Stereochemistry of matairesinol formation by Daphne secoisolariciresinol dehydrogenase. J Wood Sci 50:77–81

    Article  CAS  Google Scholar 

  46. Xia Z-Q, Costa MA, Pélissier HC et al (2001) Secoisolariciresinol dehydrogenase purification, cloning, and functional expression. J Biol Chem 276:12614–12623

    Article  CAS  PubMed  Google Scholar 

  47. Youn B, Moinuddin SGA, Davin LB et al (2005) Crystal structures of apo-form and binary/ternary complexes of Podophyllum secoisolariciresinol dehydrogenase, an enzyme involved in formation of health-protecting and plant defense lignans. J Biol Chem 280:12917–12926

    Article  CAS  PubMed  Google Scholar 

  48. Moinuddin SGA, Youn B, Bedgar DL et al (2006) Secoisolariciresinol dehydrogenase: mode of catalysis and stereospecificity of hydride transfer in Podophyllum peltatum. Org Biol Chem 4:808–816

    Article  CAS  Google Scholar 

  49. Sakakibara N, Suzuki S, Umezawa T et al (2003) Biosynthesis of yatein in Anthriscus sylvestris. Org Biol Chem 1:2474–2485

    Article  CAS  Google Scholar 

  50. Katayama T, Ogaki A (2001) Biosynthesis of (+)-syringaresinol in Liriodendron tulipifera I: feeding experiments with L-[U-14C]phenylalanine and [8-14C]sinapyl alcohol. J Wood Sci 47:41–47

    Article  CAS  Google Scholar 

  51. Rahman MA, Katayama T, Suzuki T et al (2007) Stereochemistry and biosynthesis of (+)-lyoniresinol, a syringyl tetrahydronaphthalene lignan in Lyonia ovalifolia var. elliptica II: feeding experiments with 14C labeled precursors. J Wood Sci 53:114–120

    Article  CAS  Google Scholar 

  52. Liu J, Stipanovic RD, Bell AA et al (2008) Stereoselective coupling of hemigossypol to form (+)-gossypol in moco cotton is mediated by a dirigent protein. Phytochemistry 69:3038–3042

    Article  CAS  PubMed  Google Scholar 

  53. Umezawa T, Okunishi T, Shimada M (1997) Stereochemical diversity in lignan biosynthesis. Wood Res 84:62–75

    CAS  Google Scholar 

  54. Umezawa T (2001) Biosynthesis of lignans and related phenylpropanoid compounds. Regul Plant Growth Dev 36:57–67

    CAS  Google Scholar 

  55. Nakatsubo T, Mizutani M, Suzuki S et al (2008) Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. J Biol Chem 283:15550–15557

    Article  CAS  PubMed  Google Scholar 

  56. Gottlieb OR (1972) Chemosystematics of the lauraceae. Phytochemistry 11:1537–1570

    Article  CAS  Google Scholar 

  57. Moinuddin SGA, Hishiyama S, Cho M-H et al (2003) Synthesis and chiral HPLC analysis of the dibenzyltetrahydrofuran lignans, larreatricins, 8′-epi-larreatricins, 3,3′-didemethoxyverrucosins and meso-3,3′-didemethoxynectandrin B in the creosote bush (Larrea tridentata): evidence for regiospecific control of coupling. Org Biomol Chem 1:2307–2313

    Article  CAS  PubMed  Google Scholar 

  58. Lopes NP, Yoshida M, Kato MJ (2004) Biosynthesis of tetrahydrofuran lignans in Virola surinamensis. Brazil J Pharm Sci 40:53–57

    CAS  Google Scholar 

  59. Messiano GB, da Silva T, Nascimento IR et al (2009) Biosynthesis of antimalarial lignans from Holostylis reniformis. Phytochemistry 70:590–596

    Article  CAS  PubMed  Google Scholar 

  60. Vassão DG, Gang DR, Koeduka T et al (2006) Chavicol formation in sweet basil (Ocimum basilicum): cleavage of an esterified C9 hydroxyl group with NAD(P)H-dependent reduction. Org Biomol Chem 4:2733–2744

    Article  PubMed  Google Scholar 

  61. Koeduka T, Fridman E, Gang DR et al (2006) Eugenol and isoeugenol, characteristic aromatic constituents of spices are biosynthesized via reduction of a coniferyl alcohol ester. Proc Natl Acad Sci USA 103:10128–10133

    Article  CAS  PubMed  Google Scholar 

  62. Koeduka T, Baiga TJ, Noel JP et al (2009) Biosynthesis of t-Anethole in anise: characterization of t-Anol/Isoeugenol synthase and an O-Methyltransferase specific for a C7-C8 propenyl side chain. Plant Physiol 149:384–394

    Article  CAS  PubMed  Google Scholar 

  63. Dexter R, Qualley A, Kish CM et al (2007) Characterization of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol. Plant J 49:265–275

    Article  CAS  PubMed  Google Scholar 

  64. Umezawa T (2003) Phylogenetic distribution of lignan producing plants. Wood Res 90:27–110

    CAS  Google Scholar 

  65. Tazaki H, Hayashida T, Ishikawa F et al (1999) Lignan biosynthesis of liverworts Jamesoniella autumnalis and Lophocolea heterophylla. Tetrahedron Lett 40:101–104

    Article  CAS  Google Scholar 

  66. Orr JD, Lynn DG (1992) Biosynthesis of dehydrodiconiferyl alcohol glucosides: implications for the control of tobacco cell growth. Plant Physiol 98:343–352

    Article  CAS  PubMed  Google Scholar 

  67. Sartorelli P, Benevides PJC, Ellensohn RM et al (2001) Enantioselective conversion of p-hydroxypropenylbenzene to (+)-conocarpan in Piper regnellii. Plant Sci 161:1083–1088

    Article  CAS  Google Scholar 

  68. Katayama T, Kado Y (1998) Formation of optically active neolignans from achiral coniferyl alcohol by cell-free extracts of Eucommia ulmoides. J Wood Sci 44:244–246

    Article  CAS  Google Scholar 

  69. Lourith N, Katayama T, Ishikawa K et al (2005) Biosynthesis of a syringyl 8-O-4′ neolignan in Eucommia ulmoides: formation of syringylglycerol-8-O-4′-(sinapyl alcohol) ether from sinapyl alcohol. J Wood Sci 51:379–386

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Umezawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Umezawa, T., Yamamura, M., Nakatsubo, T., Suzuki, S., Hattori, T. (2011). Stereoselectivity of the Biosynthesis of Norlignans and Related Compounds. In: Gang, D. (eds) The Biological Activity of Phytochemicals. Recent Advances in Phytochemistry, vol 41. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7299-6_12

Download citation

Publish with us

Policies and ethics