Skip to main content

DNA-Based Nanotechnology Biosensors for Surgical Diagnosis

  • Chapter
  • First Online:
Nanotechnology Enabled In situ Sensors for Monitoring Health
  • 748 Accesses

Abstract

This chapter covers the use of DNA in biological sensing devices. Although DNA has been used for a number of years for in vitro sensing applications, there are several unique challenges to using DNA as in vivo sensors. This chapter covers some of the more significant advances in this field highlighting how these challenges are being met. In doing so, it emphasizes various ways DNA can be immobilized to implants to sense implant functionality. It also emphasizes various forms of DNA highlighting the advantages and disadvantages for in vivo sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainslie KM, Desai TA. Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. Lab Chip. 2008;8(11):1864–78.

    Article  Google Scholar 

  • Bi H, Meng S, Li Y, Guo K, Chen Y, Kong J, Yang P, Zhong W, Liu B. Deposition of PEG onto PMMA microchannel surface to minimize nonspecific adsorption. Lab Chip. 2006;6(6):769–75.

    Article  Google Scholar 

  • Buchini S, Leumann CJ. Recent improvements in antigene technology. Curr Opin Chem Biol. 2003;7:717–26.

    Article  Google Scholar 

  • Chen Y, Bilgen B, Pareta RA, Myles AJ, Fenniri H, Ciombor DM, Aaron RK, Webster TJ. Self-assembled rosette nanotube/hydrogel composites for cartilage tissue engineering. Tissue Eng Part C Methods. 2010a. Epub ahead of print.

    Google Scholar 

  • Chen C, Song G, Yang X, Ren J, Qu X. A gold nanoparticle-based strategy for label-free and colorimetric screening of DNA triplex binders. Biochimie. 2010b;92(10):1416–21.

    Google Scholar 

  • Chhabra R, Moralez JG, Raez J, Yamazaki T, Cho JY, Myles AJ, Kovalenko A, Fenniri H. One-pot nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles on self-assembled rosette nanotubes. J Am Chem Soc. 2010;132(1):32–3.

    Article  Google Scholar 

  • Chun AL, Moralez JG, Fenniri H, Webster TJ. Helical rosette nanotubes: a more effective. orthopaedic implant material. Nanotechnology. 2004;15:s234–9.

    Article  Google Scholar 

  • Chun AL, Moralez JG, Fenniri H, Webster TJ. Helical rosette nanotubes: a biomimetic coating for orthopedics? Biomaterials. 2005;26:7304–9.

    Article  Google Scholar 

  • Daniel KD, Kim GY, Vassiliou CC, Galindo M, Guimaraes AR, Weissleder R, Charest A, Langer R, Cima MJ. Implantable diagnostic device for cancer monitoring. Biosens Bioelectron. 2009;24(11):3252–7.

    Article  Google Scholar 

  • de la Escosura-Muñiz A, Sánchez-Espinel C, Díaz-Freitas B, González-Fernández A, Maltez-da Costa M, Merkoçi A. Rapid identification and quantification of tumor cells using an electrocatalytic method based on gold nanoparticles. Anal Chem. 2009;81(24):10268–74.

    Article  Google Scholar 

  • Drummond TG, Hill MG, Barton JK. Electrochemical DNA sensors. Nat Biotechnol. 2003;21(10):1192–9.

    Article  Google Scholar 

  • Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB. The triple helix: 50 years later, the outcome. Nucl Acids Res. 2008;36:5123–38.

    Article  Google Scholar 

  • Durr HR, Maier M, Jansson V, Baur A, Refior HJ. Phenol as an adjuvant for local control in the treatment of giant cell tumour of the bone. Eur J Surg Oncol. 1999;25(6):610–18.

    Article  Google Scholar 

  • Fenniri H, Mathivanan P, Vidale KL, Sherman DM, Hallenga K, Wood KV, Stowell JG. Helical rosette nanotubes: design, self-assembly and characterization. J Am Chem Soc. 2001;123:3854–5.

    Article  Google Scholar 

  • Fine E, Zhang L, Fenniri H, Webster TJ. Enhanced endothelial cell functions on rosette nanotube-coated titanium vascular stents. Int J Nanomed. 2009;4:91–7.

    Google Scholar 

  • Graichen F, Bergmann G. Four channel telemetry system for in vivo measurement of hip joint forces. J Biomed Eng. 1991;13(5):370–4.

    Article  Google Scholar 

  • Graichen F, Bergmann G, Rohlmann A. Hip endoprosthesis for in vivo measurement of joint force and temperature. J Biomech. 1999;32(10):1113–17.

    Article  Google Scholar 

  • Graichen F, Arnold R, Rohlmann A, Bergmann G. Implantable 9-channel telemetry system for in vivo load measurements with orthopedic implants. IEEE Trans Biomed Eng. 2007;54(2):253–61.

    Article  Google Scholar 

  • Guo Y, Ye JY, Divin C, Huang B, Thomas TP, Baker JR Jr, Norris TB. Real-time biomolecular binding detection using a sensitive photonic crystal biosensor. Anal Chem. 2010;82(12):5211–8.

    Article  Google Scholar 

  • Hashimoto K, Ito K, Ishimori Y. Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Anal Chem. 1994;66:3830–3.

    Article  Google Scholar 

  • Henry OY, Fragoso A, Beni V, Laboria N, Sánchez JL, Latta D, Von Germar F, Drese K, Katakis I, O’Sullivan CK. Design and testing of a packaged microfluidic cell for the multiplexed electrochemical detection of cancer markers. Electrophoresis. 2009;30(19):3398–405.

    Article  Google Scholar 

  • Herne TM, Tarlov MJ. Characterization of DNA probes immobilized on gold surfaces. J Am Chem Soc. 1997;119:8916–20.

    Article  Google Scholar 

  • Hoch DB, Zieve D. Electromyography. Medical Encyclopedia. National Library of Medicine. 2008. Available at: http://www.nlm.nih.gov/medlineplus.

  • Huang H, Li J, Tan Y, Zhou J, Zhu JJ. Quantum dot-based DNA hybridization by electrochemiluminescence and anodic stripping voltammetry. Analyst. 2010;135(7):1773–8.

    Article  Google Scholar 

  • Igoucheva O, Alexeev V, Yoon K. Oligonucleotide-directed mutagenesis and targeted gene correction: a mechanistic point of view. Curr Mol Med. 2004;4:445–63.

    Article  Google Scholar 

  • Ito T, Smith CL, Cantor CR. Sequence-specific DNA purification by triplex affinity capture. Proc Natl Acad Sci U S A. 1992;89:495–8.

    Article  Google Scholar 

  • Ji H, Smith LM. Rapid purification of double-stranded DNA by triple-helix-mediated affinity capture. Anal Chem. 1993;65:1323–8.

    Article  Google Scholar 

  • Journeay WS, Suri SS, Moralez JG, Fenniri H, Singh B. Rosette nanotubes show low acute pulmonary toxicity in vivo. Int J Nanomed. 2008;3(3):373–83.

    Google Scholar 

  • Labuda L, Bučková M, Vaníčková M, Mattusch L, Wennrich R. Voltammetric detection of the DNA interaction with copper complex compounds and damage to DNA. Electroanalysis. 1999;11:101–7.

    Article  Google Scholar 

  • Leegsma-Vogt G, Rhemrev-Boom MM, Tiessen RG, Venema K, Korf J. The potential of ­biosensor technology in clinical monitoring and experimental research. Biomed Mater Eng. 2004;14(4):455–64.

    Google Scholar 

  • Lin TW, Kekuda D, Chu CW. Label-free detection of DNA using novel organic-based electrolyte-insulator-semiconductor. Biosens Bioelectron. 2010;25(12):2706–10.

    Article  Google Scholar 

  • Liu S, Ye L, He P, Fang Y. Voltammetric determination of sequence-specific DNA by electroactive intercalator on graphite electrode. Anal Chim Acta. 1996;335:239–43.

    Article  Google Scholar 

  • Livache T, Roget A, Dejean E, Barthet C, Bidan G, Te´oule R. Preparation of a DNA matrix via an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group. Nucl Acids Res. 1994;22:2915–21.

    Article  Google Scholar 

  • Marrazza G, Chianella L, Mascini M. Disponsable DNA electrochemical sensor for hybridization detection. Biosens Bioelectron. 1999;14:43–51.

    Article  Google Scholar 

  • McLaughlin KJ, Strain-Damerell CM, Xie K, Brekasis D, Soares AS, Paget MS, Kielkopf CL. Structural basis for NADH/NAD+ redox sensing by a Rex family repressor. Mol Cell. 2010;38(4):563–75.

    Article  Google Scholar 

  • McNaught AD, Wilkinson A. International Union of Pure and Applied Chemistry, Second Edition. Compendium of Chemical Terminology. Blackwell Science, 1997.

    Google Scholar 

  • Ménard-Moyon C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes for probing and modulating molecular functions. Chem Biol. 2010;17(2):107–15.

    Article  Google Scholar 

  • Mikkelsen SK. Electrochemical biosensors for DNA sequence detection. Electroanalysis. 1996;8:15–19.

    Article  Google Scholar 

  • Millan KM, Mikkelsen SK. Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Anal Chem. 1993;65:2317–23.

    Article  Google Scholar 

  • Millan KM, Spurmanis AL, Mikkelsen SK. Covalent immobilization of DNA onto glassy carbon electrodes. Electroanalysis. 1992;4:929–32.

    Article  Google Scholar 

  • Millan KM, Saraullo A, Mikkelsen SK. Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. Anal Chem. 1994;66:2943–8.

    Article  Google Scholar 

  • Oliveira Brett AM, Serrano SHP, Gutz I, La-Scalea MA, Cruz ML. Voltammetric behavior of nitroimidazoles at a DNA-biosensor. Electroanalysis. 1997;9:1132–7.

    Article  Google Scholar 

  • Oliveira Brett AM, Macedo TRA, Raimundo D, Marques MH, Serrano SHP. Voltammetric behaviour of mitoxantrone at a DNA-biosensor. Biosens Bioelectron. 1998;13:861–7.

    Article  Google Scholar 

  • Palecek R, Fojta M, Tomschik M, Wang L. Electrochemical biosensors for DNA hybridization and DNA damage. Biosens Bioelectron. 1998;13:621–8.

    Article  Google Scholar 

  • Pividori MI, Merkoçi A, Alegret S. Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosens Bioelectron. 2000;15(5–6):291–303.

    Article  Google Scholar 

  • Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem Soc Rev. 2010;39(5):1747–63.

    Article  Google Scholar 

  • Schluep T, Cooney CL. Purification of plasmids by triplex affinity interaction. Nucl Acids Res. 1998;26:4524–8.

    Article  Google Scholar 

  • Steel AR, Herne TM, Tarlov MJ. Electrochemical quantification of DNA immobilized on gold. Anal Chem. 1998;70:4670–7.

    Article  Google Scholar 

  • Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc. 1998;120:1959–64.

    Article  Google Scholar 

  • Sun X, He P, Liu S, Ye L, Fang Y. Immobilization of single-stranded deoxyribonucleic acid on gold electrode with self-assembled aminoethanethiol monolayer for DNA electrochemical sensor applications. Talanta. 1998;47:487–95.

    Article  Google Scholar 

  • Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F. Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron. 2010;25(7):1553–65.

    Article  Google Scholar 

  • Wadhwa R, Lagenaur CF, Cui XT. Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release 2006;110(3):531–41.

    Article  Google Scholar 

  • Wang J, Cai X, Jonsson C, Balakrishnan M. Adsorptive stripping potentiometry of DNA at electrochemically pretreated carbon paste electrodes. Electroanalysis. 1996;8:20–4.

    Article  Google Scholar 

  • Wang J, Cai X, Rivas G, Shiraishi H. Stripping potentiometric transduction of DNA hybridization processes. Anal Chim Acta. 1996;326:141–7.

    Article  Google Scholar 

  • Wang J, Cai X, Rivas G, Shiraishi H, Farias PAM, Dontha N. DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus. Anal Chem. 1996;68:2629–34.

    Article  Google Scholar 

  • Wang J, Cai X, Fernandes JR, Grant DH, Ozsoz M. Electrochemical measurements of oligonucleotides in the presence of chromosomal DNA using membrane-covered carbon electrodes. Anal Chem. 1997;69:4056–9.

    Article  Google Scholar 

  • Wang J, Cai X, Rivas G, Shiraishi H, Dontha N. Nucleic-acid immobilization, recognition and detection at chronopotentiometric DNA chips. Bioelectron. 1997;12:587–99.

    Article  Google Scholar 

  • Wei F, Lillehoj PB, Ho CM. DNA diagnostics: nanotechnology-enhanced electrochemical detection of nucleic acids. Pediatr Res. 2010;67(5):458–68.

    Article  Google Scholar 

  • Wilkins E, Atanasov P. Glucose monitoring: state of the art and future possibilities. Med Eng Phys. 1996;18(4):273–88.

    Article  Google Scholar 

  • Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallée-Bélisle A, Gong X, Yuen JD, Hsu BB, Heeger AJ, Plaxco KW. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci USA. 2010;107(24):10837–41.

    Article  Google Scholar 

  • Yang M, McGovern ME, Thompson M. Genosensor technology and the detection of interfacial nucleic acid chemistry. Anal Chim Acta. 1997;346:259–75.

    Google Scholar 

  • Zhang L, Chen Y, Rodriguez J, Fenniri H, Webster TJ. Biomimetic helical rosette nanotubes and nanocrystalline hydroxyapatite coatings on titanium for improving orthopedic implants. Int J Nanomed. 2008;3(3):323–33.

    Google Scholar 

  • Zhang L, Rakotondradany F, Myles AJ, Fenniri H, Webster T. Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering. Biomaterials. 2009;30(7):1309–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yupeng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, Y., Yu, H. (2011). DNA-Based Nanotechnology Biosensors for Surgical Diagnosis. In: Webster, T. (eds) Nanotechnology Enabled In situ Sensors for Monitoring Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7291-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7291-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7290-3

  • Online ISBN: 978-1-4419-7291-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics