DNA-Based Nanotechnology Biosensors for Surgical Diagnosis



This chapter covers the use of DNA in biological sensing devices. Although DNA has been used for a number of years for in vitro sensing applications, there are several unique challenges to using DNA as in vivo sensors. This chapter covers some of the more significant advances in this field highlighting how these challenges are being met. In doing so, it emphasizes various ways DNA can be immobilized to implants to sense implant functionality. It also emphasizes various forms of DNA highlighting the advantages and disadvantages for in vivo sensor applications.


Sensors DNA Nanotechnology In vivo Immobilization 


  1. Ainslie KM, Desai TA. Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. Lab Chip. 2008;8(11):1864–78.CrossRefGoogle Scholar
  2. Bi H, Meng S, Li Y, Guo K, Chen Y, Kong J, Yang P, Zhong W, Liu B. Deposition of PEG onto PMMA microchannel surface to minimize nonspecific adsorption. Lab Chip. 2006;6(6):769–75.CrossRefGoogle Scholar
  3. Buchini S, Leumann CJ. Recent improvements in antigene technology. Curr Opin Chem Biol. 2003;7:717–26.CrossRefGoogle Scholar
  4. Chen Y, Bilgen B, Pareta RA, Myles AJ, Fenniri H, Ciombor DM, Aaron RK, Webster TJ. Self-assembled rosette nanotube/hydrogel composites for cartilage tissue engineering. Tissue Eng Part C Methods. 2010a. Epub ahead of print.Google Scholar
  5. Chen C, Song G, Yang X, Ren J, Qu X. A gold nanoparticle-based strategy for label-free and colorimetric screening of DNA triplex binders. Biochimie. 2010b;92(10):1416–21.Google Scholar
  6. Chhabra R, Moralez JG, Raez J, Yamazaki T, Cho JY, Myles AJ, Kovalenko A, Fenniri H. One-pot nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles on self-assembled rosette nanotubes. J Am Chem Soc. 2010;132(1):32–3.CrossRefGoogle Scholar
  7. Chun AL, Moralez JG, Fenniri H, Webster TJ. Helical rosette nanotubes: a more effective. orthopaedic implant material. Nanotechnology. 2004;15:s234–9.CrossRefGoogle Scholar
  8. Chun AL, Moralez JG, Fenniri H, Webster TJ. Helical rosette nanotubes: a biomimetic coating for orthopedics? Biomaterials. 2005;26:7304–9.CrossRefGoogle Scholar
  9. Daniel KD, Kim GY, Vassiliou CC, Galindo M, Guimaraes AR, Weissleder R, Charest A, Langer R, Cima MJ. Implantable diagnostic device for cancer monitoring. Biosens Bioelectron. 2009;24(11):3252–7.CrossRefGoogle Scholar
  10. de la Escosura-Muñiz A, Sánchez-Espinel C, Díaz-Freitas B, González-Fernández A, Maltez-da Costa M, Merkoçi A. Rapid identification and quantification of tumor cells using an electrocatalytic method based on gold nanoparticles. Anal Chem. 2009;81(24):10268–74.CrossRefGoogle Scholar
  11. Drummond TG, Hill MG, Barton JK. Electrochemical DNA sensors. Nat Biotechnol. 2003;21(10):1192–9.CrossRefGoogle Scholar
  12. Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB. The triple helix: 50 years later, the outcome. Nucl Acids Res. 2008;36:5123–38.CrossRefGoogle Scholar
  13. Durr HR, Maier M, Jansson V, Baur A, Refior HJ. Phenol as an adjuvant for local control in the treatment of giant cell tumour of the bone. Eur J Surg Oncol. 1999;25(6):610–18.CrossRefGoogle Scholar
  14. Fenniri H, Mathivanan P, Vidale KL, Sherman DM, Hallenga K, Wood KV, Stowell JG. Helical rosette nanotubes: design, self-assembly and characterization. J Am Chem Soc. 2001;123:3854–5.CrossRefGoogle Scholar
  15. Fine E, Zhang L, Fenniri H, Webster TJ. Enhanced endothelial cell functions on rosette nanotube-coated titanium vascular stents. Int J Nanomed. 2009;4:91–7.Google Scholar
  16. Graichen F, Bergmann G. Four channel telemetry system for in vivo measurement of hip joint forces. J Biomed Eng. 1991;13(5):370–4.CrossRefGoogle Scholar
  17. Graichen F, Bergmann G, Rohlmann A. Hip endoprosthesis for in vivo measurement of joint force and temperature. J Biomech. 1999;32(10):1113–17.CrossRefGoogle Scholar
  18. Graichen F, Arnold R, Rohlmann A, Bergmann G. Implantable 9-channel telemetry system for in vivo load measurements with orthopedic implants. IEEE Trans Biomed Eng. 2007;54(2):253–61.CrossRefGoogle Scholar
  19. Guo Y, Ye JY, Divin C, Huang B, Thomas TP, Baker JR Jr, Norris TB. Real-time biomolecular binding detection using a sensitive photonic crystal biosensor. Anal Chem. 2010;82(12):5211–8.CrossRefGoogle Scholar
  20. Hashimoto K, Ito K, Ishimori Y. Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Anal Chem. 1994;66:3830–3.CrossRefGoogle Scholar
  21. Henry OY, Fragoso A, Beni V, Laboria N, Sánchez JL, Latta D, Von Germar F, Drese K, Katakis I, O’Sullivan CK. Design and testing of a packaged microfluidic cell for the multiplexed electrochemical detection of cancer markers. Electrophoresis. 2009;30(19):3398–405.CrossRefGoogle Scholar
  22. Herne TM, Tarlov MJ. Characterization of DNA probes immobilized on gold surfaces. J Am Chem Soc. 1997;119:8916–20.CrossRefGoogle Scholar
  23. Hoch DB, Zieve D. Electromyography. Medical Encyclopedia. National Library of Medicine. 2008. Available at:
  24. Huang H, Li J, Tan Y, Zhou J, Zhu JJ. Quantum dot-based DNA hybridization by electrochemiluminescence and anodic stripping voltammetry. Analyst. 2010;135(7):1773–8.CrossRefGoogle Scholar
  25. Igoucheva O, Alexeev V, Yoon K. Oligonucleotide-directed mutagenesis and targeted gene correction: a mechanistic point of view. Curr Mol Med. 2004;4:445–63.CrossRefGoogle Scholar
  26. Ito T, Smith CL, Cantor CR. Sequence-specific DNA purification by triplex affinity capture. Proc Natl Acad Sci U S A. 1992;89:495–8.CrossRefGoogle Scholar
  27. Ji H, Smith LM. Rapid purification of double-stranded DNA by triple-helix-mediated affinity capture. Anal Chem. 1993;65:1323–8.CrossRefGoogle Scholar
  28. Journeay WS, Suri SS, Moralez JG, Fenniri H, Singh B. Rosette nanotubes show low acute pulmonary toxicity in vivo. Int J Nanomed. 2008;3(3):373–83.Google Scholar
  29. Labuda L, Bučková M, Vaníčková M, Mattusch L, Wennrich R. Voltammetric detection of the DNA interaction with copper complex compounds and damage to DNA. Electroanalysis. 1999;11:101–7.CrossRefGoogle Scholar
  30. Leegsma-Vogt G, Rhemrev-Boom MM, Tiessen RG, Venema K, Korf J. The potential of ­biosensor technology in clinical monitoring and experimental research. Biomed Mater Eng. 2004;14(4):455–64.Google Scholar
  31. Lin TW, Kekuda D, Chu CW. Label-free detection of DNA using novel organic-based electrolyte-insulator-semiconductor. Biosens Bioelectron. 2010;25(12):2706–10.CrossRefGoogle Scholar
  32. Liu S, Ye L, He P, Fang Y. Voltammetric determination of sequence-specific DNA by electroactive intercalator on graphite electrode. Anal Chim Acta. 1996;335:239–43.CrossRefGoogle Scholar
  33. Livache T, Roget A, Dejean E, Barthet C, Bidan G, Te´oule R. Preparation of a DNA matrix via an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group. Nucl Acids Res. 1994;22:2915–21.CrossRefGoogle Scholar
  34. Marrazza G, Chianella L, Mascini M. Disponsable DNA electrochemical sensor for hybridization detection. Biosens Bioelectron. 1999;14:43–51.CrossRefGoogle Scholar
  35. McLaughlin KJ, Strain-Damerell CM, Xie K, Brekasis D, Soares AS, Paget MS, Kielkopf CL. Structural basis for NADH/NAD+ redox sensing by a Rex family repressor. Mol Cell. 2010;38(4):563–75.CrossRefGoogle Scholar
  36. McNaught AD, Wilkinson A. International Union of Pure and Applied Chemistry, Second Edition. Compendium of Chemical Terminology. Blackwell Science, 1997.Google Scholar
  37. Ménard-Moyon C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes for probing and modulating molecular functions. Chem Biol. 2010;17(2):107–15.CrossRefGoogle Scholar
  38. Mikkelsen SK. Electrochemical biosensors for DNA sequence detection. Electroanalysis. 1996;8:15–19.CrossRefGoogle Scholar
  39. Millan KM, Mikkelsen SK. Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Anal Chem. 1993;65:2317–23.CrossRefGoogle Scholar
  40. Millan KM, Spurmanis AL, Mikkelsen SK. Covalent immobilization of DNA onto glassy carbon electrodes. Electroanalysis. 1992;4:929–32.CrossRefGoogle Scholar
  41. Millan KM, Saraullo A, Mikkelsen SK. Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. Anal Chem. 1994;66:2943–8.CrossRefGoogle Scholar
  42. Oliveira Brett AM, Serrano SHP, Gutz I, La-Scalea MA, Cruz ML. Voltammetric behavior of nitroimidazoles at a DNA-biosensor. Electroanalysis. 1997;9:1132–7.CrossRefGoogle Scholar
  43. Oliveira Brett AM, Macedo TRA, Raimundo D, Marques MH, Serrano SHP. Voltammetric behaviour of mitoxantrone at a DNA-biosensor. Biosens Bioelectron. 1998;13:861–7.CrossRefGoogle Scholar
  44. Palecek R, Fojta M, Tomschik M, Wang L. Electrochemical biosensors for DNA hybridization and DNA damage. Biosens Bioelectron. 1998;13:621–8.CrossRefGoogle Scholar
  45. Pividori MI, Merkoçi A, Alegret S. Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosens Bioelectron. 2000;15(5–6):291–303.CrossRefGoogle Scholar
  46. Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem Soc Rev. 2010;39(5):1747–63.CrossRefGoogle Scholar
  47. Schluep T, Cooney CL. Purification of plasmids by triplex affinity interaction. Nucl Acids Res. 1998;26:4524–8.CrossRefGoogle Scholar
  48. Steel AR, Herne TM, Tarlov MJ. Electrochemical quantification of DNA immobilized on gold. Anal Chem. 1998;70:4670–7.CrossRefGoogle Scholar
  49. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc. 1998;120:1959–64.CrossRefGoogle Scholar
  50. Sun X, He P, Liu S, Ye L, Fang Y. Immobilization of single-stranded deoxyribonucleic acid on gold electrode with self-assembled aminoethanethiol monolayer for DNA electrochemical sensor applications. Talanta. 1998;47:487–95.CrossRefGoogle Scholar
  51. Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F. Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron. 2010;25(7):1553–65.CrossRefGoogle Scholar
  52. Wadhwa R, Lagenaur CF, Cui XT. Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release 2006;110(3):531–41.CrossRefGoogle Scholar
  53. Wang J, Cai X, Jonsson C, Balakrishnan M. Adsorptive stripping potentiometry of DNA at electrochemically pretreated carbon paste electrodes. Electroanalysis. 1996;8:20–4.CrossRefGoogle Scholar
  54. Wang J, Cai X, Rivas G, Shiraishi H. Stripping potentiometric transduction of DNA hybridization processes. Anal Chim Acta. 1996;326:141–7.CrossRefGoogle Scholar
  55. Wang J, Cai X, Rivas G, Shiraishi H, Farias PAM, Dontha N. DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus. Anal Chem. 1996;68:2629–34.CrossRefGoogle Scholar
  56. Wang J, Cai X, Fernandes JR, Grant DH, Ozsoz M. Electrochemical measurements of oligonucleotides in the presence of chromosomal DNA using membrane-covered carbon electrodes. Anal Chem. 1997;69:4056–9.CrossRefGoogle Scholar
  57. Wang J, Cai X, Rivas G, Shiraishi H, Dontha N. Nucleic-acid immobilization, recognition and detection at chronopotentiometric DNA chips. Bioelectron. 1997;12:587–99.CrossRefGoogle Scholar
  58. Wei F, Lillehoj PB, Ho CM. DNA diagnostics: nanotechnology-enhanced electrochemical detection of nucleic acids. Pediatr Res. 2010;67(5):458–68.CrossRefGoogle Scholar
  59. Wilkins E, Atanasov P. Glucose monitoring: state of the art and future possibilities. Med Eng Phys. 1996;18(4):273–88.CrossRefGoogle Scholar
  60. Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallée-Bélisle A, Gong X, Yuen JD, Hsu BB, Heeger AJ, Plaxco KW. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci USA. 2010;107(24):10837–41.CrossRefGoogle Scholar
  61. Yang M, McGovern ME, Thompson M. Genosensor technology and the detection of interfacial nucleic acid chemistry. Anal Chim Acta. 1997;346:259–75.Google Scholar
  62. Zhang L, Chen Y, Rodriguez J, Fenniri H, Webster TJ. Biomimetic helical rosette nanotubes and nanocrystalline hydroxyapatite coatings on titanium for improving orthopedic implants. Int J Nanomed. 2008;3(3):323–33.Google Scholar
  63. Zhang L, Rakotondradany F, Myles AJ, Fenniri H, Webster T. Arginine-glycine-aspartic acid modified rosette nanotube-hydrogel composites for bone tissue engineering. Biomaterials. 2009;30(7):1309–20.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Orthopaedics, School of EngineeringBrown UniversityProvidenceUSA

Personalised recommendations