Skip to main content

Design of Multi-Component Reactions

  • Conference paper
  • First Online:
MCR 2009

Abstract

Multi-component reactions (MCRs) have now been well established as a powerful synthetic tool for creating molecular complexity and diversity and are undoubtedly well suited for the drug discovery program. Another potential that has probably received less attention among synthetic chemists is the opportunity offered by MCRs for the development of new fundamentally important transformations (reactions). Indeed, although an MCR is composed of a series of known bimolecular reactions, the overall transformation could be novel. Consequently, it provides chemists the opportunities to uncover transformations that were otherwise difficult to realize. In this talk, we will present our recent work in this field, including: (1) the oxidative homologation of aldehydes to amides, (2) the oxidative coupling of aldehydes and isocyanides to α-ketoamides, (3) oxidative isocyanide-based MCRs, and (4) the enantioselective Passerini reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Grassot JM, Masson G, Zhu J. (2008) Synthesis of α-ketoamides by a molecular-sieves-promoted formal oxidative coupling of aliphatic aldehydes with isocyanides. Angew Chem Int Ed 47:947–950.

    Article  CAS  Google Scholar 

  • Ngouansavanh T, Zhu J. (2007) IBX-mediated oxidative Ugi-type multicomponent reactions: application to the N and C1 functionalization of tetrahydroisoquinoline. Angew Chem Int Ed 46:5775.

    Article  CAS  Google Scholar 

  • Yue T, Wang M-X, Wang DX, Zhu J. (2008) Asymmetric synthesis of 5-(1-hydroxyalkyl)tetrazoles by catalytic enantioselective Passerini-type reactions. Angew Chem Int Ed 47:9454–9457.

    Article  CAS  Google Scholar 

  • El Kaim L, Gizolme M, Grimaud L, Oble J. (2007) Smiles rearrangements in Ugi- and Passerini-type couplings: new multicomponent access to O- and N-arylamides. J Org Chem 72:5835–5838.

    Article  Google Scholar 

  • Oble J, El Kaïm L, Gizzi M, Grimaud L. (2007) Ugi-Smiles access to quinoxaline derivative. Heterocycles 73:503–517.

    Article  CAS  Google Scholar 

  • El Kaim L, Gizzi M, Grimaud L. (2008) New MCR−Heck−isomerization cascade toward indoles. Org Lett 10:3417–3419.

    Article  CAS  Google Scholar 

  • El Kaim L, Gizolme M, Grimaud L, Oble J. (2007) Smiles rearrangements in Ugi- and Passerini-type couplings: new multicomponent access to O- and N-arylamides. J Org Chem 72:4169–4180.

    Article  Google Scholar 

  • Giovenzana GB, Tron GC, Di Paola S, Menegotto IG, Pirali T. (2006) A mimicry of primary amines by bis-secondary diamines as components in the Ugi four-component reaction. Angew Chem Int Ed 45:1099–1102.

    Article  CAS  Google Scholar 

  • Pirali T, Tron GC, Zhu JP. (2006) One-pot synthesis of macrocycles by a tandem three-component reaction and intramolecular [3+2] cycloaddition. Org Lett 8:4145–4148.

    Article  CAS  Google Scholar 

  • Kielland N[AU1], Catti F, Bello D, Isambert N, Soteras I, Luque FJ, Lavilla R. (2010) Boron-based dipolar multicomponent reactions: simple generation of substituted aziridines, oxazolidines and pyrrolidines. Chem Eur J (DOI: 10.1002/chem.201000349).

    Google Scholar 

  • Witte[AU2] H, Gulden W, Hesse G. (1968) Liebigs Ann Chem 716:1–10.

    Article  CAS  Google Scholar 

  • Hesse G, Witte H, Gulden W. (1965) Angew Chem 77:591; Angew Chem Int Ed Engl 4:569.

    Article  CAS  Google Scholar 

  • Banfi L, Basso A, Guanti G, Lecinska P, Riva R, Rocca V. (2007) Multicomponent synthesis of novel 2- and 3-substituted dihydrobenzo<1,4>oxazepinones and tetrahydro-benzo<1,4>oxazepinones and their conformational analysis. Heterocycles 73:699–728.

    Article  CAS  Google Scholar 

  • Banfi L, Basso A, Guanti G, Lecinska P, Riva R. (2006) Multicomponent synthesis of dihydrobenzoxazepinones by coupling Ugi and Mitsunobu reactions. Org Biomol Chem 4:4236–4240.

    Article  CAS  Google Scholar 

  • Banfi L, Basso A, Guanti G, Lecinska P, Riva R. (2008) Multicomponent synthesis of benzoxazinones via tandem Ugi/Mitsunobu reactions: an unexpected cine-substitution. Mol Diversity 12:187–190.

    Article  CAS  Google Scholar 

  • Díaz JL, Miguel M, Lavilla R, (2004) N-acylazinium salts: a new source of iminium ions for Ugi-type processes. J Org Chem 69:3550–3553.

    Article  Google Scholar 

  • Novokshonov VV, Novokshonova IA, Ushakov IA, Medvedeva AS. (2006) Chem Heterocycl Comp 42:1492.

    Article  CAS  Google Scholar 

  • Medvedeva AS, Mareev AV, Demina MM. (2008) Russ Chem Bull Int Ed 57:929.

    Article  CAS  Google Scholar 

  • Shklyaev YV, Eltsov MA, Maiorova OA. (2010) Three-component condensation of o- and p-methoxytoluenes with isobutyraldehyde and -substituted benzyl cyanides. Synthetic approach to analogs of natural alkaloids. Russ J Org Chem 46(1):113–116.

    Article  CAS  Google Scholar 

  • Rozhkova YS, Maiorova OA, Shklyaev YV. (2009) Synthesis of 4H-spiro[adamantane-2,3-isoquinoline] derivatives. Russ J Org Chem 45(12):1874–1876.

    Article  CAS  Google Scholar 

  • Glushkov VA, Stryapunina OG, Gorbunov AA, Maiorova OA, Slepukhin PA, Ryabukhina SA, Khorosheva EV, Sokol VI, Shklyaev YV. (2010) Synthesis of 1-substituted 2-azaspiro[4.5]deca-6,9-diene-8-ones and 2-azaspiro[4.5]deca-1,6,9-triene-8-ones by a three-component condensation of 1,2,3-, 1,2,4- or 1,3,5-trimethoxybenzene with isobutyric aldehyde and nitriles. Tetrahedron 66:721–729.

    Article  CAS  Google Scholar 

  • Shklyaev YV, Gilev MY, Maiorova OA. Retropinacol rearrangement in the synthesis of, 3,4-trimethyl-3,4-dihydroisoquinoline derivatives. Russ J Org Chem 45(12):1843–1846.

    Google Scholar 

  • Fisyuk AS, Poendaev NV. (2001) Synthesis and reactions of 5,6-dihydropyridin-2(1H)-ones and – thiones (review). Targets Heterocycl Syst 5:271.

    CAS  Google Scholar 

  • Levi MD, Fisyuk AS, Demadrille R, Markevich E, Gofer Y, Aurbachand D, Pron A. (2006) Unusually high stability of a poly(alkylquaterthiophene-alt-oxadiazole) conjugated copolymer in its n and p-doped states. Chem Commun (31):3299–3301.

    Article  CAS  Google Scholar 

  • Giraud M, Andreiadis ES, Fisyuk AS, Demadrille R, Pécaut J, Imbert D, Mazzanti M. (2008) Efficient sensitization of lanthanide luminescence by tetrazole-based polydentate ligands. Inorg Chem 47(10):3952–3954.

    Article  CAS  Google Scholar 

  • Gulevich AV, Shevchenko NE, Balenkova ES, Röschenthaler G-V, Nenajdenko VG. (2008) The Ugi reaction with CF3-carbonyl compounds: effective synthesis of α-trifluoromethyl amino acid derivatives. Tetrahedron 64:11706–11712.

    Article  CAS  Google Scholar 

  • Gulevich[AU8] AV, Shevchenko NE, Balenkova ES, Röschenthaler G-V, Nenajdenko VG. (2009) Efficient multicomponent synthesis of α-trifluoromethyl proline, homoproline, and azepan carboxylic acid dipeptides. Synlett 3:403–406.

    Google Scholar 

  • Mironov MA[AU9], Ivantsova MN, Mokrushin VS. (2006) A novel isocyanide-based multicomponent reaction: an easy access to substituted propionamides and succinimides. Synlett 615–618.

    Article  CAS  Google Scholar 

  • Mironov MA, Mokrushin VS, Maltsev SS. (2003) New method for the combinatorial search of multi component reactions. Synlett 943–945.

    Article  CAS  Google Scholar 

  • Mironov MA, Tokareva MI, Mokrushin VS. (2007) Synthesis of 3-iminoindole derivatives by the reactions of aromatic isocyanides with N,N-dialkylbenzylamines. Mendeleev Commun 17:354–356.

    Article  CAS  Google Scholar 

  • Mironov MA, Ivantsova MN, Tokareva MI, Mokrushin VS. (2007) Novel synthesis of dihydrothiophene-2, 5-diimine derivatives by the three-component reaction of isocyanides with enamines and arylisothiocyanates. Heterocycles 73:567–579.

    Article  CAS  Google Scholar 

  • Chen JJ, Deshpande SV. (2003) Rapid synthesis of α-ketoamides using microwave irradiation–simultaneous cooling method. Tetrahedron Lett 44:8873.

    Article  CAS  Google Scholar 

  • Livinghouse T. (1999) C-Acylnitrilium ion initiated cyclizations in heterocycle synthesis. Tetrahedron 55:9947.

    Article  CAS  Google Scholar 

  • Schreiber SL. (1991) Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251:283.

    Article  CAS  Google Scholar 

  • Levkovskaya GG, Drozdova TI, Rozentsveig IB, Мirskova АN. (1999) Usp Khim 68:638.

    Google Scholar 

  • Rozentsveig IB, Evstaf’eva IT, Levkovskaya GG, Mirskova AN. (2000) Russ J Org Chem 36:847.

    Google Scholar 

  • Rozentsveig IB, Levkovskaya GG, Albanov AI, Mirskova AN. (2000) Russ J Org Chem 36:671.

    CAS  Google Scholar 

  • Tomilov YV, Platonov DN, Dorokhov DV, Nefedov OM. (2007) A new method for the synthesis of azaheterocycles based on cascade reactions of nitrogen- and phosphorus-containing ylides with methyl diazoacetate. Tetrahedron Lett 48:883.

    Article  CAS  Google Scholar 

  • Tomilov YV, Platonov DN, Salikov RF, Okonnishnikova GP. (2008) Synthesis and properties of stable 1,2,3,4,5,6,7-heptamethoxycarbonylcyclohepta-2,4,6-trien-1-yl potassium and its reactions with electrophilic reagents. Tetrahedron 64:10201.

    Article  CAS  Google Scholar 

  • Rulev AY, Ushakov IA, Nenajdenko VG. (2008) One-pot synthesis of functionalized indenols from 2-bromoalkenyl trifluoromethyl ketones. Tetrahedron 64:8073–8077.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Our research has been executed with the financial support of grant no. RFFI 07-03-0001, the program of Presidium of the Russian Academy of Sciences, on the theme “Development of Methods of Obtaining of Chemical Substances and Creation of New Materials.”

This work was supported by the Russian Foundation for Basic Research (grant no. 08-03-00067-a).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jieping Zhu , Laurent El Kaïm , Gian Cesare Tron , Rodolfo Lavilla , Luca Banfi , N. Kielland , Alevtina S. Medvedeva , Yurii V. Shklyaev , Alexander S. Fisyuk , Anton V. Gulevich , Maria N. Ivantsova , Tracey Pirali , Igor B. Rozentsveig , Yury V. Tomilov , Alexander Y. Rulev , Alexandra Vorobyeva , Jieping Zhu , Laurent El Kaïm , Gian Cesare Tron , Rodolfo Lavilla , Luca Banfi , N. Kielland , Alevtina S. Medvedeva , Yurii V. Shklyaev , Alexander S. Fisyuk , Anton V. Gulevich , Maria N. Ivantsova , Tracey Pirali , Igor B. Rozentsveig , Yury V. Tomilov , Alexander Y. Rulev or Alexandra Vorobyeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Zhu, J. et al. (2011). Design of Multi-Component Reactions. In: Mironov, M. (eds) MCR 2009. Advances in Experimental Medicine and Biology, vol 699. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7270-5_5

Download citation

Publish with us

Policies and ethics