Skip to main content

Droplet Impact on a Solid Surface

  • Chapter
  • First Online:
Handbook of Atomization and Sprays

Abstract

This chapter considers droplet-wall interaction and droplet impact and splashing on a solid surface. The discussion on droplet-wall interaction considers thermo-fluid-dynamic processes associated with droplet impact onto solid surfaces. The emphasis is put on the disintegration mechanisms as an introduction to the intricate interaction phenomena occurring at spray impingement. The analysis starts with the simplest situation of single droplet impacts onto non-heated and dry surfaces; further complexities are then introduced which consider the interaction with a liquid film and the combined effects of heat transfer. The discussion on droplet impact and splashing on a solid surface includes splashing and fragmentation of molten metal and other liquid droplets landing on a solid surface. Issues such as different types of splashing, corona splashes, freezing induced splashing are considered from an experimental point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Lesser: The impact of a compressible liquid, In Drop-surface interactions, M. Rein (Ed.), Springer Wien, New York, p. 39 (2002).

    Google Scholar 

  2. K. Range, F. Feuillebois: Influence of surface roughness on liquid drop impact, J. Col. Int. Sci., 203, 16–30 (1998).

    Article  Google Scholar 

  3. D. Sivakumar: Spreading behaviour of an impacting drop on a structured rough surface, Phys. Fluids, 17, 100608 (2005).

    Article  Google Scholar 

  4. T. Thomas (Ed.): Rough surfaces, Longman Group Limited (1982).

    Google Scholar 

  5. C. W. Extrand: Criteria for ultralyphobic surfaces, Langmuir, 20, 5013–5018 (2004).

    Article  Google Scholar 

  6. R. Rioboo, M. Marengo, C. Tropea: Time evolution of liquid drop impact onto solid, dry surfaces, Exp. Fluids, 33(1), 112–124 (2002).

    Google Scholar 

  7. I. V. Roisman, R. Rioboo, C. Tropea: Normal impact of a liquid drop on a dry surface: model for spreading and receding, Proc. R. Soc. Lond. Ser. A, 458, 1411–1430 (2002).

    Article  MATH  Google Scholar 

  8. M. Pasandideh-Fard, Y. M. Qiao, S. Chandra, J. Mostaghimi: Capillary effects during droplet impact on a solid surface, Phys. Fluids, 8(3), 650–658 (1006).

    Article  Google Scholar 

  9. M. White: Viscous fluid flow, 2nd edn., McGraw-Hill, New-York (1991).

    Google Scholar 

  10. R. Rioboo, C. Tropea, M. Marengo: Outcome from a drop impact on solid surfaces, Atom. Sprays, 11, 155–165 (2001).

    Google Scholar 

  11. S. Moita, A. L. N. Moreira: Drop impacts onto cold and heated rigid surfaces: Morphological comparisons, disintegration limits and secondary atomization, Int. J. Heat Fluid Flow, 28(4), 735–752(2007).

    Article  Google Scholar 

  12. L. Xu, W. W. Zahang, S. R. Nagel: Drop splashing onto a dry smooth surface, Phys. Rev. Lett., 94, 184505 (2005).

    Article  Google Scholar 

  13. L. Randy, G. Vander Wall, G. M. Berger, S. D. Mozes: The combined influence of a rough surface and thin fluid film upon the splashing threshold and splash dynamics of a droplet impacting onto them, Exp. Fluids, 40, 23–32 (2006).

    Article  Google Scholar 

  14. G. E. Cossali, M. Marengo, A. Coghe, S. Zhdanov: The role of time in single droplet splash on thin film, Exp. Fluids, 36(6), 888–900 (2004).

    Article  Google Scholar 

  15. L. Yarin, D. A. Weiss: Impact of drops on solid surfaces: Self-similar capillary waves and splashing as a new type of kinematic discontinuity, J. Fluid Mech., 283, 141–173 (1995).

    Article  Google Scholar 

  16. Z. Han, Z. Xu, N. Trigui: Spray/wall interaction models for multidimensional engine simulation, Int. J. Eng. Res., 1(1), 127–146 (2000).

    Article  Google Scholar 

  17. C. X. Bai, A. D. Gosman: Development of a methodology for spray impingement simulation, SAE Paper 950283 (1995).

    Google Scholar 

  18. M. Gavaises, A. Theodorakakos, G. Bergeles: Modeling wall impaction of diesel sprays, Int. J. Heat Fluid Flow, 17(2), 130–138 (1996).

    Article  Google Scholar 

  19. V. Roisman, K. Horvat, C. Tropea: Spray impact: Rim transverse instability initiating fingering and splash: Description of a secondary spray, Phys. Fluids, 18, 102104 (2006).

    Article  MathSciNet  Google Scholar 

  20. D. Stow, M. G. Hadfield: An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface, Proc. R. Soc. Lond. Ser. A, 373, 419–441 (1981).

    Article  Google Scholar 

  21. C. Mundo, C. Tropea, M. Sommerfeld: On the modelling of liquid sprays impinging on surfaces, Atom. Sprays, 8, 625–652 (1998).

    Google Scholar 

  22. G. E. Cossali, A. Coghe, M. Marengo: The impact of a single drop on a wetted solid surface, Exp. Fluids, 22, 463–472 (1997).

    Article  Google Scholar 

  23. Tropea, M. Marengo: The impact of drops on walls and films, Multiphase Sci. Tech., 11(1), 19–36 (1999).

    Google Scholar 

  24. S. Y. Lee, S. U. Ryu: Recent progress of spray-wall interaction research, J. Mech. Sci. Tech., 20(8), 1101–1117 (2006).

    Article  Google Scholar 

  25. J. D. Bernardin, I. Mudawar: The Leidenfrost point: Experimental study and assessment of existing models, Trans. ASME, 121, 894–903 (1999).

    Article  Google Scholar 

  26. J. D. Bernardin, I. Mudawar: A Leidenfrost point model for impinging droplets and sprays, ASME J. Heat Transfer, 126, 272–278 (2004).

    Article  Google Scholar 

  27. H. Xie, Z. Zhou: A model for droplet evaporation near Leidenfrost point, Int. J. Heat Mass Transfer, 50, 5238–5333 (2007).

    Article  Google Scholar 

  28. S. W. Akhtar, A. J. Yule: Droplet impaction on a heated surface at high Weber numbers, In: Proceedings of the ILASS-Europe 2001, Zurich (2001).

    Google Scholar 

  29. J. D. Naber, P. Farrel: Hydrodynamics of droplet impingement on a heated surface, SAE Paper 930919 (1993).

    Google Scholar 

  30. G. E. Cossali, M. Marengo, M. Santini: Secondary atomization produced by single drop vertical impacts onto heated surfaces, Exp. Thermal Fluid Sci., 29, 937–946 (2005).

    Article  Google Scholar 

  31. A. L. N. Moreira, A. S. Moita, E. Cossali, M. Marengo, M. Santini: Secondary atomization of water and isooctane drops impinging on tilted heated surfaces, Exp. Fluids, 43, 297–313 (2007).

    Article  Google Scholar 

  32. S. Moita, A. L. N. Moreira: Development of correlations to predict the secondary droplet size of impacting droplets onto heated surfaces, Exp. Fluids, 47, 755–768 (2009).

    Article  Google Scholar 

References

  1. A. M. Worthington: A study of splashes. Longmans, Green, London, 129 pp. (1908).

    Google Scholar 

  2. H. E. Edgerton, J. R. Killian: Flash! Seeing the unseen by ultra-high-speed photography. Branford, Boston, 215 pp. (1954).

    Google Scholar 

  3. S. D. Aziz, S. Chandra: Impact, recoil and splashing of molten metal droplets, Int. J. Heat Mass Transfer, 43, 2841–2857 (2000).

    Article  Google Scholar 

  4. S. Chandra, P. Fauchais: Formation of solid splats during thermal spray deposition, J. Thermal Spray Technol., 18, 148–180 (2009).

    Article  Google Scholar 

  5. R. Li, N. Ashgriz, S. Chandra, J. R. Andrews: Shape and surface texture of molten droplets deposited on cold surfaces, Surface Coatings Technol., 202, 3960–3966 (2008).

    Google Scholar 

  6. R. W. Gent, N. P. Dart, J. T. Cansdale: Aircraft icing, Philos. Trans. R. Soc. Lond. A, 358, 2873–2911 (2000).

    Article  MATH  Google Scholar 

  7. L. Hulse-Smith, N. Z. Mehdizadeh, S. Chandra: Deducing droplet size and impact velocity from circular bloodstains, J. Forensic Sci., 50, 1–10 (2005).

    Article  Google Scholar 

  8. M. Rein: Phenomena of liquid drop impact on solid and liquid surfaces, Fluid Dyn. Res., 12, 61–93 (1993).

    Article  Google Scholar 

  9. A. L. Yarin: Drop impact dynamics: Splashing, spreading, receding, bouncing…, Annu. Rev. Fluid Mechanics, 38, 159–192 (2006).

    Article  MathSciNet  Google Scholar 

  10. C. D. Stow, M. G. Hadfield: An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proc. R. Soc. Lond. Ser. A, 373, 419–441 (1981).

    Article  Google Scholar 

  11. C. Mundo, M. Sommerfeld, C. Tropea: Droplet-wall collisions: experimental studies of the deformation and breakup process, Int. J. Multiphase Flow, 21, 151–173 (1995).

    Article  MATH  Google Scholar 

  12. G. E. Cossali, A. Coghe, M. Marengo: The impact of a single drop on a wetted solid surface, Exp. Fluids, 22, 463–72 (1997).

    Article  Google Scholar 

  13. K. Range, F. Feuillebois: Influence of surface roughness on liquid drop impact, J. Colloid Interface Sci., 203, 16–30 (1998).

    Article  Google Scholar 

  14. R. L. Vander Wal, G. M. Berger, S. D. Mozes: The combined influence of a rough surface and thin fluid film upon the splashing threshold and splash dynamics of a droplet impacting onto them, Exp. Fluids, 40, 23–32 (2006).

    Article  Google Scholar 

  15. M. Mani, S. Mandre, M. P. Brenner: Precursors to splashing of liquid droplets on a solid surface, Phys. Rev. Lett., 102, 134502 (2009).

    Article  Google Scholar 

  16. M. Mani, S. Mandre, M. P. Brenner: Events before droplet splashing on a solid surface, J. Fluid Mech., 647, 163–185 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Mehdi-Nejad, J. Mostaghimi, S. Chandra: Air bubble entrapment under an impacting droplet, Phys. Fluids, 15, 173–183 (2003).

    Article  Google Scholar 

  18. L. Xu, W. W. Zhang, S. R. Nagel: Drop splashing on a dry smooth surface, Phys. Rev. Lett., 94, 184505 (2005).

    Article  Google Scholar 

  19. R. Rioboo, C. Tropea, M. Marengo: Outcomes from a drop impact on solid surfaces, Atomization Sprays, 11, 155–165 (2001).

    Google Scholar 

  20. R. Dhiman, S. Chandra: Freezing-induced splashing during impact of molten metal droplets with high Weber numbers, Int. J. Heat Mass Transfer, 48, 5625–5638 (2005).

    Article  Google Scholar 

  21. N. Z. Mehdizadeh, S. Chandra, J. Mostaghimi: Formation of fingers around the edges of a drop hitting a metal plate with high velocity, J. Fluid Mechanics, 510, 353–373 (2004).

    Article  MATH  Google Scholar 

  22. J. de Ruiter, R. E. Pepper, H. A. Stone: Thickness of the rim of an expanding lamella near the splash threshold, Phys. Fluids, 22, 022104 (2010).

    Article  Google Scholar 

  23. C. Jossrand, L. Lemoyne, R. Troeger, S. Zaleski: Droplet impact on a dry surface: Triggering the splash with a small obstacle, J. Fluid Mechanics, 524, 47–56 (2005).

    Article  Google Scholar 

  24. H. J. Subramani, T. Al-Housseiny, A. U. Chen, M. Li, O. A. Basaran: Dynamics of drop impact on a rectangular slot, Ind. Eng. Chem. Res., 46, 6105–6112 (2007).

    Article  Google Scholar 

  25. L. Xu, L. Barcos, S. R. Nagel: Splashing of liquids: Interplay of surface roughness with surrounding gas, Phys. Rev. E, 76, 066311 (2007).

    Article  Google Scholar 

  26. K. L. Pan, K. C. Tseng, C. H. Wang: Breakup of a droplet at high velocity impacting a solid surface, Exp. Fluids, 48, 143–156 (2010).

    Article  Google Scholar 

  27. L. Xu: Liquid drop splashing on smooth, rough, and textured surfaces, Phys. Rev. E, 75, 056316 (2007).

    Article  Google Scholar 

  28. P. Tsai, S. Pacheco, C. Pirat, L. Lefferts, D. Lohse: Drop impact upon micro- and nanostructured superhydrophobic surfaces, Langmuir, 25, 12293–12298 (2009).

    Article  Google Scholar 

  29. R. D. Schroll, C. J. S. Zaleski, W. W. Zhang: Impact of a viscous liquid drop, Phys. Rev. Lett., 104, 034504 (2010).

    Article  Google Scholar 

  30. G. E. Cossali, A. Coghe, M. Marengo The impact of a single drop on a wetted solid surface, Exp. Fluids, 22, 463–472 (1997).

    Article  Google Scholar 

  31. G. E. Cossali, M. Marengo, A. Coghe, S. Zhdanov: The role of time in single drop splash on thin film, Exp. Fluids, 36, 888–900 (2004).

    Article  Google Scholar 

  32. R. F. Allen: The role of surface tension in splashing, J. Coll. Interface Sci., 51, 350–351 (1975).

    Article  Google Scholar 

  33. R. Bhola, S. Chandra: Parameters controlling solidification of molten wax droplets falling on a solid surface, J. Mater. Sci., 34, 4883–4894 (1999).

    Article  Google Scholar 

  34. K. Range, F. Feuillebois: Influence of surface roughness on liquid drop impact, J. Colloid Interface Sci., 203, 16–30 (1998).

    Article  Google Scholar 

  35. H. Y. Kim, Z. C. Feng, J. H. Chun: Instability of a liquid jet emerging from a droplet upon collision with a solid surface. Phys. Fluids, 12, 531–541 (2000).

    Article  MATH  Google Scholar 

  36. A. I. Fedorchenko, A. A. Chernov: Formation of fingers at the front of an axially symmetric film of liquid upon the impact of a drop with a solid surface, Doklady Phys., 44, 570–572 (1999).

    Google Scholar 

  37. R. E. Pepper, L. Courbin, H. A. Stone: Splashing on elastic membranes: The importance of early-time dynamics, Phys. Fluids, 20, 082103 (2008).

    Article  Google Scholar 

  38. S.T. Thoroddsen, J. Sakakibara: Evolution of the fingering pattern of an impacting drop, Phys. Fluids, 10, 1359–74 (1998).

    Article  Google Scholar 

  39. S. S. Yoon, R. A. Jepsen, M. R. Nissen, T. J. O’Hern: Experimental investigation on splashing and nonlinear fingerlike instability of large water drops, J. Fluids Struct., 23, 101–115 (2007).

    Article  Google Scholar 

  40. S. S. Yoon, R. A. Jepsen, S. C. James, J. Liu, G. Aguilar: Are drop-impact phenomena described by Rayleigh-Taylor or Kelvin-Helmholtz theory?, Drying Technol., 27, 316–321 (2009).

    Article  Google Scholar 

  41. R. Dhiman, S. Chandra: Rupture of thin films formed during droplet impact, Proc. R. Soc. A, 466, 1229–1245 (2010).

    Article  Google Scholar 

  42. N. Z. Mehdizadeh, M. Raessi, S. Chandra, J. Mostaghimi: Effect of substrate temperature on splashing of molten tin droplets, J. Heat Transfer, 126, 445–452 (2004).

    Article  Google Scholar 

  43. A. McDonald, C. Moreau, S. Chandra: Thermal contact resistance between plasma sprayed particles and flat surfaces, Int. J. Heat Mass Transfer, 50, 1737–1749 (2007).

    Article  MATH  Google Scholar 

  44. R. Dhiman, A. McDonald, S. Chandra: Predicting splat morphology in a thermal spray process, Surface Coatings Technol., 201, 7789–8801 (2007).

    Article  Google Scholar 

  45. N. Z. Mehdizadeh, S. Chandra: Boiling during high velocity impact of water droplets on a hot stainless steel surface, Proc. R. Soc. Lond. A, 462, 3115–3131 (2006).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António L. N. Moreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer US

About this chapter

Cite this chapter

Moreira, A.L.N., Moita, A.S., Chandra, S. (2011). Droplet Impact on a Solid Surface. In: Ashgriz, N. (eds) Handbook of Atomization and Sprays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7264-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7264-4_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7263-7

  • Online ISBN: 978-1-4419-7264-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics