Droplet Deformation and Breakup

  • D. R. Guildenbecher
  • C. López-Rivera
  • P. E. Sojka


Following formation, droplets may enter a region where aerodynamic forces are large enough to cause significant deformation and breakup. When a droplet breaks apart into a multitude of small fragments due to disruptive aerodynamic forces, the process is termed secondary atomization. This has been a rich area of study for many years and a number of in-depth reviews are available [1–4]. Here, the most important findings are discussed. The chapter is divided into two sections: Newtonian and non-Newtonian liquids.

Droplets may be accelerated from rest gently or by a near step change in relative velocity. Experimentation has shown that the breakup is different in each case. The first case is found in nature and plays an important role in rain storms. However, the latter is more likely to occur in sprays. For this reason, this chapter considers only breakup due to step changes in relative velocity.


Bag breakup Breakup mode Breakup time Catastrophic breakup Fragments Fragment size distribution Initiation time Multimode breakup Newtonian drops Non-Newtonian drops Ohnesorge number (OhSecondary atomization Secondary breakup Sheet-thinning breakup Total breakup time Vibrational breakup Weber number (We


  1. 1.
    M. Pilch, C. A. Erdman: Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of a Liquid Drop, Intl. J. Multi. Flow 13(6), 741–757 (1987).CrossRefGoogle Scholar
  2. 2.
    L. P. Hsiang, G. M. Faeth: Near-Limit Drop Deformation and Secondary Breakup, Intl. J. Multi. Flow 18(5), 635–652 (1992).zbMATHCrossRefGoogle Scholar
  3. 3.
    B. E. Gelfand: Droplet Breakup Phenomena in Flows with Velocity Lag, Prog. Energy Comb. Sci. 22(3), 201–265 (1996).CrossRefGoogle Scholar
  4. 4.
    D. R. Guildenbecher, C. López-Rivera, P. E. Sojka: Secondary Atomization, Exp. Fluids 46(3), 371–402 (2009).CrossRefGoogle Scholar
  5. 5.
    A. A. Ranger, J. A. Nicholls: Aerodynamic Shattering of Liquid Drops, AIAA J. 7(2), 285–290 (1969).CrossRefGoogle Scholar
  6. 6.
    B. E. Gel’fand, S. A. Gubin, S. M. Kogarko, S. P. Komar: Singularities of the Breakup of Viscous Liquid Droplets in Shock Waves, J. Engr. Phys. 25(3), 1140–1142 (1975).CrossRefGoogle Scholar
  7. 7.
    G. M. Faeth, L. P. Hsiang, P. K. Wu: Structure and Breakup Properties of Sprays, Intl. J. Multi. Flow 21, 99–127 (1995).zbMATHCrossRefGoogle Scholar
  8. 8.
    R. Brodkey: The Phenomena of Fluid Motions, Addison-Wesley, Reading, MA, Chap. 17-1 C(b) Breakup of Drops (1967).Google Scholar
  9. 9.
    A. B. Liu, D. Mather, R. D. Reitz: Modeling the Effect of Drop Drag and Breakup on Fuel Sprays, SAE 930072 (1993).Google Scholar
  10. 10.
    B. T. Helenbrook, C. F. Edwards: Quasi-Steady Deformation and Drag of Uncontaminated Liquid Drops, Intl. J. Multi. Flow 28(10), 1631–1657 (2002).zbMATHCrossRefGoogle Scholar
  11. 11.
    B. J. O’donnell, B. T. Helenbrook: Drag on Ellipsoids at Finite Reynolds Numbers, Atom. Sprays 15(4), 363–375 (2005).CrossRefGoogle Scholar
  12. 12.
    J. Han, G. Tryggvason: Secondary Breakup of Axisymmetric Liquid Drops. II. Impulsive Acceleration, Phys. Fluids 13(6), 1554–1565 (2001).CrossRefGoogle Scholar
  13. 13.
    W. H. Chou, G. M. Faeth: Temporal Properties of Secondary Drop Breakup in the Bag Breakup Regime, Intl. J. Multi. Flow 24(6), 889–912 (1998).zbMATHCrossRefGoogle Scholar
  14. 14.
    Z. Liu, R. D. Reitz: An Analysis of the Distortion and Breakup Mechanisms of High Speed Liquid Drops, Intl. J. Multi. Flow 23(4), 631–650 (1997).zbMATHCrossRefGoogle Scholar
  15. 15.
    S. Khosla, C. E. Smith, R. P. Throckmorton: Detailed Understanding of Drop Atomization by Gas Crossflow Using the Volume of Fluid Method, Toronto, Canada (2006).Google Scholar
  16. 16.
    Z. Dai, G. M. Faeth: Temporal Properties of Secondary Drop Breakup in the Multimode Breakup Regime, Intl. J. Multi. Flow 27(2), 217–236 (2001).zbMATHCrossRefGoogle Scholar
  17. 17.
    D. D. Joseph, J. Belanger, G. S. Beavers: Breakup of a Liquid Drop Suddenly Exposed to a High-Speed Airstream, Intl. J. Multi. Flow 25(6–7), 1263–1303 (1999).zbMATHCrossRefGoogle Scholar
  18. 18.
    S. S. Hwang, Z. Liu, R. D. Reitz: Breakup Mechanisms and Drag Coefficients of High-Speed Vaporizing Liquid Drops, Atom. Sprays 6(3), 353–376 (1996).Google Scholar
  19. 19.
    R. A. Mugele, D. H. Evans: Droplet Size Distribution in Sprays, Ind. Engr. Chem. 43(6), 1317–1324 (1951).CrossRefGoogle Scholar
  20. 20.
    H. C. Simmons: The Correlation of Drop-Size Distributions in Fuel Nozzle Sprays Part I: The Drop-Size/Volume-Fraction Distribution, J. Engr. Power, 309–314 (1977).Google Scholar
  21. 21.
    H. C. Simmons: The Correlation of Drop-Size Distributions in Fuel Nozzle Sprays Part II: The Drop-Size/Number Distribution, J. Engr. Power, 315–319 (1977).Google Scholar
  22. 22.
    L. P. Hsiang, G. M. Faeth: Drop Properties after Secondary Breakup, Intl. J. Multi. Flow 19(5), 721–735 (1993).zbMATHCrossRefGoogle Scholar
  23. 23.
    K. L. Wert: A Rationally-Based Correlation for Mean Fragment Size for Drop Secondary Breakup, Intl. J. Multi. Flow 21(6), 1063–1071 (1995).zbMATHCrossRefGoogle Scholar
  24. 24.
    E. Babinsky, P. E. Sojka: Modeling Drop Size Distributions, Prog. Energy Comb. Sci. 28(4), 303–329 (2002).CrossRefGoogle Scholar
  25. 25.
    J. E. Matta, R. P. Tytus: Viscoelastic Breakup in a High Velocity Airstream, J. Appl. Polym. Sci. 27, 397–405 (1982).CrossRefGoogle Scholar
  26. 26.
    J. E. Matta, R. P. Tytus, J. L. Harris: Aerodynamic Atomization of Polymeric Solutions, Chem. Engr. Commun. 19, 191–204 (1983).CrossRefGoogle Scholar
  27. 27.
    C. Arcoumanis, L. Khezzar, D. S. Whitelaw, B. C. H. Warren: Breakup of Newtonian and Non-Newtonian Fluids in Air Jets, Exp. Fluids 17, 405–414 (1994).CrossRefGoogle Scholar
  28. 28.
    C. Arcoumanis, D. S. Whitelaw, J. H. Whitelaw: Breakup of Droplets of Newtonian and Non-Newtonian Fluids, Atom. Sprays 6, 245–256 (1996).Google Scholar
  29. 29.
    D. D. Joseph, G. S. Beavers, T. Funada: Rayleigh-Taylor Instability of Viscoelastic Drops at High Weber Numbers, J. Fluid Mech. 453, 109–132 (2002).zbMATHCrossRefGoogle Scholar
  30. 30.
    J. D. Wilcox, R. K. June, H. A. Brown, R. C. Kelley: The Retardation of Drop Breakup in High-Velocity Airstreams by Polymeric Modifiers, J. Appl. Polym. Sci. 5(13), 1–6 (1961).CrossRefGoogle Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  • D. R. Guildenbecher
    • 1
  • C. López-Rivera
  • P. E. Sojka
  1. 1.Maurice J. Zucrow Laboratories, School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations