Fire Suppression

  • C. PresserEmail author
  • J. C. Yang


Water sprinkler sprays (with relatively large droplet sizes) in residential and commercial structures are probably the most well-known application of sprays in fire suppression. In more recent years, water mists (characterized by reduced droplet sizes, which may contain additives) have been considered as a replacement for Halon 1301, the most common fire suppressant chemical aboard aircraft and ships, but banned as an ozone-depleting chemical by the Montreal Protocol in 1987. Much research has focused on characterizing the liquid discharge from agent storage bottles, spray transport in various obstructed environments, agent suppression of liquid-fueled, spray-type fires, and determination of the effectiveness of various liquid and powdered chemicals (with respect to gaseous agents) to extinguish a flame in well-controlled experimental facilities. Research during the past two decades to characterize liquid and powdered sprays may find sprays appealing alternatives to environmentally harmful gaseous agents in the near future, if properly engineered.


Fire suppression Flame extinguishment Flame suppression screens Flash vaporized sprays Spray transport Sprinklers Water mists 


  1. 1.
    R. G. Gann, (ed.): Advanced technology for fire suppression in aircraft – final report of the next generation fire suppression program, NIST SP 1069, National Institute of Standards and Technology, Gaithersburg (2007).Google Scholar
  2. 2.
    A. M. Lentati, H. K. Chelliah: Physical, thermal, and chemical effects of fine-water droplets in extinguishing counterflow diffusion flames, 27th Symposium (International) on Combustion, pp. 2839–2846, Combustion Institute, Pittsburgh (1998).Google Scholar
  3. 3.
    R. G. Gann, (ed.): Fire suppression system performance of alternative agents in aircraft engine and dry bay laboratory simulations, NIST SP 890, National Institute of Standards and Technology, Gaithersburg (1995).Google Scholar
  4. 4.
    W. L. Grosshandler, R. G. Gann, W. M. Pitts (eds.): Evaluation of alternative in-flight fire suppressants for full-scale testing in simulated aircraft engine nacelles and dry bays, NIST SP 861, National Institute of Standards and Technology, Gaithersburg (1994).Google Scholar
  5. 5.
    W. L. Grosshandler, G. Gmurczyk, C. Presser: Effectiveness of Halon alternatives in suppressing dynamic combustion processes. In: Miziolek, A.W., and Tsang, W., (eds.) Halon Replacements: Technology and Science, ACS Symposium Series No. 611, Chapter 18, pp. 205–224, American Chemical Society, Washington. (1995).Google Scholar
  6. 6.
    H. Tsuji: Counterflow diffusion flames, Prog. Energy Combust. Sci. 8, 93–119 (1982).CrossRefMathSciNetGoogle Scholar
  7. 7.
    J. C. Yang, M. K. Donnelly, N. C. Prive, W. L. Grosshandler: An apparatus for screening fire suppression efficiency of dispersed liquid agents, Fire Saf. J. 36, 55–72 (2001).CrossRefGoogle Scholar
  8. 8.
    T. A. Milne, C. L. Green, D. K. Benson: The use of the counterflow diffusion flame in studies of inhibition effectiveness of gaseous and powdered agents, Combust. Flame 15(3), 255–264 (1970).CrossRefGoogle Scholar
  9. 9.
    R. G. Gann, J. D. Barnes, S. Davis, J. S. Harris, R. H. Harris Jr., J. T. Herron, B. C. Levin, F. I. Mopsik, K. A. Notarianni, M. R. Nyden, M. Paabo, R. E. Ricker: Preliminary screening procedures and criteria for replacements for Halons 1211 and 1301, NIST TN 1278, National Institute of Standards and Technology, Gaithersburg (1990).Google Scholar
  10. 10.
    W. L. Grosshandler, C. Presser, D. Lowe, W. Rinkinen: Assessing Halon alternatives for aircraft engine nacelle fire suppression, J. Heat Transf. 117(2), 489–494 (1995).CrossRefGoogle Scholar
  11. 11.
    A. Hamins, C. Presser, L. Melton: Suppression of a baffle stabilized spray flame by halogenated agents, Proceedings of the Combustion Institute, Vol. 26, pp. 1413–1420, Combustion Institute, Pittsburgh (1996).Google Scholar
  12. 12.
    W. Grosshandler, A. Hamins, K. McGrattan, S. R. Charagundla, C. Presser: Suppression of a non-premixed flame behind a step, Proceedings of the Combustion Institute, Vol. 28, pp. 2957–2964, Combustion Institute, Pittsburgh (2000).Google Scholar
  13. 13.
    P. Andersson, G. Holmstedt: Limitations of water mist as a total flooding agent, J. Fire Prot. Eng. 9, 31–50 (1999).CrossRefGoogle Scholar
  14. 14.
    P. J. Disimile, J. R. Tucker, B. Croswell, J. M. Davis: The transport of water sprays past generic clutter elements found within engine nacelles, Fire Saf. J. 40, 65–78 (2005).CrossRefGoogle Scholar
  15. 15.
    J. M. Davis, P. J. Disimile: Effect of engine nacelle clutter density on downstream water spray distributions, At. Sprays 18(6), 553–569 (2008).CrossRefGoogle Scholar
  16. 16.
    S. S. Yoon, P. E. DesJardin, C. Presser, J. C. Hewson, C. T. Avedisian: Numerical modeling and experimental measurements of water spray impact and transport over a cylinder, Int. J. Multiphase Flow 32(1), 132–157 (2006).zbMATHCrossRefGoogle Scholar
  17. 17.
    C. Presser, G. Papadopoulos, J. F. Widmann: PIV measurements of water mist transport in a homogeneous turbulent flow past an obstacle, Fire Saf. J. 41(8), 580–604 (2006).CrossRefGoogle Scholar
  18. 18.
    C. Presser, C. T. Avedisian: Transport of high boiling-point fire suppressants in a droplet-laden homogeneous turbulent flow past a heated cylinder, At. Sprays 16(6), 627–656 (2006).CrossRefGoogle Scholar
  19. 19.
    S. L. Manzello, J. C. Yang: On the collision dynamics of a water droplet containing an additive on a heated solid surface, Proc. R. Soc. Lond., Ser. A 458, 2417–2444 (2002).CrossRefGoogle Scholar
  20. 20.
    S. L. Manzello, J. C. Yang: An experimental study of high Weber number impact of methoxy-nonafluorobutane C4F9OCH3 (HFE7100) and n-heptane droplets on a heated solid surface, Int. J. Heat Mass Transf. 45, 3961–3971 (2002).CrossRefGoogle Scholar
  21. 21.
    A. Hamins: Flame extinction by sodium bicarbonate powder in a cup burner, 27th Symposium (International) on Combustion, pp. 2857–2864, Combustion Institute (1998).Google Scholar
  22. 22.
    D. Trees, K. Seshadri: Experimental studies of flame extinction by sodium bicarbonate (NaHCO3) powder, Combust. Sci. Technol. 122:215–226 (1997).CrossRefGoogle Scholar
  23. 23.
    H. K. Chelliah, P. C. Wanigarathne, A. M. Lentati, R. H. Krauss, G. S. Fallon: Effect of sodium bicarbonate particle size on the extinction condition of non-premixed counterflow flames, Combust. Flame 134(3), 261–272 (2003).CrossRefGoogle Scholar
  24. 24.
    J. W. Fleming, M. D. Reed, E. J. P. Zegers, B. A. Williams, R. S. Sheinson: Extinction studies of propane/air counterflow diffusion flames: the effectiveness of aerosols, Proc. Halon Options Technical Working Conf., Albuquerque, pp. 403–414 (1998).Google Scholar
  25. 25.
    NFPA 750 Standard on water mist fire protection systems, 2006 edition, National Fire Protection Association, Quincy (2006).Google Scholar
  26. 26.
    J. R. Mawhinney: Water mist fire suppression systems. In Cote, A.E., (ed.-in-chief) Fire Protection Handbook (20th ed.), Volume II, Section 16, Chapter 8, NFPA, Quincy (2008).Google Scholar
  27. 27.
    R. S. Sheinson, B. Borman, A. Maranghides, R. Anleitner, P. Gunning: Use of water spray cooling systems in conjunction with HFP (HFC-227ea) to protect shipboard flammable liquid storage rooms, Proc. Halon Options Technical Working Conf., Albuquerque, pp. 447–456 (2001).Google Scholar
  28. 28.
    A. K. Lazzarini, R. H. Krauss, H. K. Chelliah, G. T. Linteris: Extinction conditions of nonpremixed flames with fine droplets of water and water-NaOH solutions, 28th Symposium (International) on Combustion, pp. 2939–2945, Combustion Institute, Pittsburgh (2000).Google Scholar
  29. 29.
    E. J. P. Zegers, B. A. Williams, R. S. Sheinson, J. W. Fleming: Dynamics and suppression effectiveness of monodisperse water droplets in non-premixed counterflow flames, Proceedings of the Combustion Institute, Vol. 28, pp. 2931–2937, Combustion Institute, Pittsburgh (2000).Google Scholar
  30. 30.
    K. Prasad, C. Li, K. Kailasanath: Optimizing water-mist injection characteristics for suppression of coflow diffusion flames, 27th Symposium (International) on Combustion, pp. 2847–2855, Combustion Institute, Pittsburgh (1998).Google Scholar
  31. 31.
    A. M. Lentati, H. K. Chelliah: Dynamics of water droplets in a counterflow field and their effect on flame extinction, Combust. Flame 115(1/2), 158–179 (1998).CrossRefGoogle Scholar
  32. 32.
    Crowe, C., Sommerfeld, M., and Tsuji, Y.: Multiphase flows with droplets and particles, CRC Press, New York, pp. 15, 377–378 (1998).Google Scholar
  33. 33.
    J. F. Widmann: Characterization of a residential fire sprinkler using phase doppler interferometry, At. Sprays 12(1-3), 69–90 (2002).CrossRefGoogle Scholar
  34. 34.
    L. Y. Cooper: Interaction of an isolated sprinkler spray and a two-layer compartment fire environment, Int. J. Heat Mass Transf. 38, 679–690 (1995).CrossRefGoogle Scholar
  35. 35.
    S. Nam: Development of a computational model simulating the interaction between a fire plume and a sprinkler spray, Fire Saf. J. 26, 1–33 (1996).CrossRefGoogle Scholar
  36. 36.
    K. McGrattan, H. Baum, R. Rehm, S. Hostikka, J. Floyd: Fire dynamics simulator (version 5) technical reference guide, NIST SP 1018–5, National Institute of Standards and Technology, Gaithersburg (2007).Google Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.National Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations