Advertisement

Pharmaceutical Aerosol Sprays for Drug Delivery to the Lungs

  • W. H. FinlayEmail author
Chapter

Abstract

Respiratory illnesses are commonly treated with drugs delivered to the lungs as an inhaled aerosol. The inhaled aerosol route sometimes offers advantages over other routes such as injection or oral delivery. These advantages include rapid and predictable onset of action of drug, decreased adverse reactions, as well as safe and convenient delivery. However, the design of a device and formulation for reliable delivery of a pharmaceutical compound as an inhaled aerosol is more difficult than most other delivery routes. This is because of the need to transform the active ingredient into an aerosol having particle sizes of a few micrometers in diameter that is then supplied to the patient’s mouth upon inhalation. Devices that can create sprays with particles in the micrometer size range, but which remain portable, inexpensive to manufacture, easy to use by patients, and are robust enough to withstand patient use, are relatively few in design. Indeed, at present only four basic spray production mechanisms are currently in use on the clinical market for drug delivery to the lungs: pressurized release of a volatile propellant, colliding liquid jets, air-blast atomization and high frequency vibration methods. While other methods have undergone development (e.g., Rayleigh breakup of an extruded liquid jet [1]; high voltage electrosprays [2]), they have not yet reached market release. In the following we consider the four clinically available methods.

Keywords

Medical aerosols Metered dose inhaler Nebulizer Pharmaceutical aerosols Respiratory drug delivery 

References

  1. 1.
    Ward, M. E., Woodhouse, A., Mather, L. E., Farr, S. J., Okikawa, J. K., Lloyd, P., Schuster, J. A., and Rubsamen, R. M. 1997. Morphine pharmacokinetics after pulmonary administration from a novel aerosol delivery system, Clin. Pharm. Ther. 62:596–609.CrossRefGoogle Scholar
  2. 2.
    Meesters, G. M. H., Vercoulen, P. H. W., Marijnissen, J. C. M., and Scarlett, B. 1992. Generation of micron-sized droplets from the Taylor cone, J. Aerosol Sci. 23:37–49.CrossRefGoogle Scholar
  3. 3.
    Finlay, W. H. 2001. Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction. Academic. LondonGoogle Scholar
  4. 4.
    Versteeg, H. K., Hargrave, G. K., and Kirby, M. 2006. Internal flow and near-orifice spray visualisation of a model pharmaceutical pressurized metered dose inhaler, J. Phys. (Conf. Ser.) 45:207–213.CrossRefGoogle Scholar
  5. 5.
    Crosland, B. M., Johnson, M. R. J., and Matida, E. A. 2009. Characterization of the spray velocities from a pressurized metered-dose inhaler, J. Aerosol Med. Pulm. Drug. Del. 22:85097.Google Scholar
  6. 6.
    Dunbar, C. A., Watkins, A. P., and Miller, J. F. 1997. An experimental investigation of the spray issued from a pMDI using laser diagnostic techniques, J. Aerosol Med. 10:351–268.CrossRefGoogle Scholar
  7. 7.
    Clark, A. R. 1996. MDIs: physics of aerosol formation, J. Aerosol Med. 9S:19–26.Google Scholar
  8. 8.
    Kleinstreuer, C., Shi, H., and Zhang, Z. 2006. Computational analyses of a pressurized metered dose inhaler and a new drug-aerosol targeting methodology, J. Aerosol Med. 20:294–309.CrossRefGoogle Scholar
  9. 9.
    Martin, A. R. and Finlay, W. H. The effect of humidity on particle sizing from metered-dose inhalers, Aerosol Sci. Technol. 39:283–289, 2005.Google Scholar
  10. 10.
    Domnick, J. and Durst, F. 1995. Measurement of bubble size, velocity and concentration in flashing flow behind a sudden constriction, Int. J. Multiphase Flow 21:1047–1062.zbMATHCrossRefGoogle Scholar
  11. 11.
    Dunbar, C. A., Watkins, A. P., and Miller, J. F. 1997. Theoretical investigation of the spray from a metered-dose inhaler. Atom. Sprays 7:417–436.Google Scholar
  12. 12.
    Zierenberg, B., Eicher, J., Dunne, S., and Freund, B. 1996. Boehringer Ingelheim nebulizer BINEB a new approach to inhalation therapy. In R. N. Dalby, P. R. Byron, and S. J. Farr, eds., Proceedings of Respiratory Drug Delivery V. Interpharm Press, Buffalo Grove, pp. 187–193.Google Scholar
  13. 13.
    Bartels, F., Bachtler, W., Dunne, S. T., Eicher, J., Freund, B., Hart, W. B., and Lessmoellmann, C. 1999. Atomizing nozzle and filter and spray generating device, US Patent 6007676.Google Scholar
  14. 14.
    Jaeger, J., Cirillo, P., Eicher, J., Geser, J., Freund, B., and Zierenberg, B. 2005. Device for producing high pressure in a fluid in miniature, US patent 69185467.Google Scholar
  15. 15.
    Zierenberg, B. 1999. Optimizing the in vitro performance of Respimat, J. Aerosol Med. 12:S19–S24.CrossRefGoogle Scholar
  16. 16.
    Mercer, T. T., Tillery, M. I., and Chow, H. Y. 1968. Operating characteristics of some compressed-air nebulizers, Am. Ind. Hyg. J. 29:66–78.Google Scholar
  17. 17.
    Dessanges, J.-F. 2001. A history of nebulization, J. Aerosol Med. 14:65–71.CrossRefGoogle Scholar
  18. 18.
    Niven, R. W., Speer, M., Schreier, H. 1991. Nebulization of liposomes II. The effects of size and modelling of solute release profiles, Pharm. Res. 8:217–221.CrossRefGoogle Scholar
  19. 19.
    Lentz, Y. K., Worden, L. R., Anchordoquy, T. J., and Lengsfeld, C. S. 2005. Effect of jet nebulization on DNA: identifying the dominant degradation mechanism and mitigation methods, J. Aerosol Sci. 36:973–990.CrossRefGoogle Scholar
  20. 20.
    Finlay, W. H., Lange, C. F., King, M., and Speert, D. 2000. Lung delivery of aerosolized dextran, Am. J. Resp. Crit. Care Med. 161:91–97.Google Scholar
  21. 21.
    Finlay, W. H., Stapleton, K. W., and Zuberbuhler, P. 1998. Variations in predicted regional lung deposition of salbutamol sulphate between 19 nebulizer models, J. Aerosol Med. 11:65–80.CrossRefGoogle Scholar
  22. 22.
    Topp, M. 1973. Ultrasonic atomization – a photographic study of the mechanism of disintegration, J. Aerosol Sci. 4:17–25.CrossRefGoogle Scholar
  23. 23.
    Cipolla, D. C., Clark, A. R., Chan, H. K., Gonda, I., and Shire, S. J. 1994. Assessment of aerosol delivery systems for recombinant human deoxyribonuclease, STP Pharm. Sci. 4:50–62.Google Scholar
  24. 24.
    Nikander, K., Turpeinen, M., and Wollmer, P. 1999. The conventional ultrasonic nebulizer proved inefficient in nebulizing a suspension, J. Aerosol Med. 12:47–53.CrossRefGoogle Scholar
  25. 25.
    Ghazanfari, T., Elhissi, A. M. A., Ding, Z., and Taylor, K. M. G. 2007. The influence of fluid physicochemical properties on vibrating-mesh nebulization, Int. J. Pharm. 339:103–111.CrossRefGoogle Scholar
  26. 26.
    Knoch, M. and Finlay, W. H. 2008. Nebulizer technologies. In Modified-Release Drug Delivery Technology, 2nd edn., ed. M. J. Rathbone, Marcel Dekker, pp. 613–622, Chap. 45.Google Scholar
  27. 27.
    Lass, J. S., Sant, A., and Knoch, M. 2006. New advances in aerosolised drug delivery: vibrating membrane nebuliser technology, Exp. Op. Drug Del. 3:693–702.CrossRefGoogle Scholar
  28. 28.
    Zhang, G., Anand, D., and Wiedmann, T. S. 2007. Performance of the vibrating membrane aerosol generation device: aeroneb micropump nebulizer, J. Aerosol Med. 20:408–416.CrossRefGoogle Scholar
  29. 29.
    Knoch, M. and Keller, M. 2005. The customised electronic nebuliser: a new category of liquid aerosol drug delivery systems, Exp. Op. Drug Del. 2:377–390.CrossRefGoogle Scholar
  30. 30.
    Elhissi, A. M. A., Faizi, M., Naji, W. F., Gill, H. S., and Taylor, K. M. G. 2007. Physical stability and aerosol properties of liposomes delivered using an air-jet nebulizer and a novel micropump device with large mesh apertures, Int. J. Pharm. 334:62–70.CrossRefGoogle Scholar
  31. 31.
    Rottier, B. L., van Erp, C. J. P., Sluyter, T. S., Heijerman, H. G. M., Frijlink, H. W. F., and de Boer, A. H. 2009. Changes in performance of the Pari eFlow® rapid and Pari LC Plus™ during 6 months use by CF patients, J. Aerosol Med. Pulm. Drug Del., ahead of print. doi:10.1089/jamp.2008.0712.Google Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of AlbertaCalgaryCanada

Personalised recommendations