Advertisement

Flame Spray Pyrolysis

  • A. PurwantoEmail author
  • W.-N. Wang
  • K. Okuyama
Chapter

Abstract

Flame spray pyrolysis (FSP) has been applied for the production of powders industrially. FSP allows production of powders with controlled characteristics at a high rate. In addition to the process parameters, several other factors are crucial for nanoparticle production. Precursor type, as an example, is an important factor determining the particle size. Using metalorganic precursors, particles in nano-sized order could be produced. While for aqueous salt precursors, atomizer type is critical. Two-fluid nozzle atomizers could be used to produce nanoparticles. Only submicron particles could be achieved by using ultrasonic nebulizers. The particle formation mechanism follows one-droplet-to-one-particle (ODOP) principle. If an organic additive, such as urea was added to the precursor, nanoparticles could be obtained. The thermal decomposition of organic additives facilitated the disintegration of primary particles producing nanoparticles. This mechanism refers to one-droplet-to-multiple-particles (ODMP) route.

Keywords

Additive Atomizer Flame Nanoparticles Pyrolysis 

References

  1. 1.
    Strobel, R.; Pratsinis, S. E. Flame aerosol synthesis of smart nanostructured materials. Journal of Materials Chemistry 2007, 17, 4743–4756.CrossRefGoogle Scholar
  2. 2.
    Wegner, K.; Pratsinis, S. E. Scale-up of nanoparticle synthesis in diffusion flame reactors. Chemical Engineering Science 2003, 58, 4581–4589.CrossRefGoogle Scholar
  3. 3.
    Pratsinis, S. E. Flame aerosol synthesis of ceramic powders. Progress in Energy and Combustion Science 1998, 24, 197–219.CrossRefGoogle Scholar
  4. 4.
    Purwanto, A.; Lenggoro, I. W.; Chang, H. W.; Okuyama, K. Preparation of submicron- and nanometer-sized particles of Y2O3: Eu3+ by flame spray pyrolysis using ultrasonic and two-fluid atomizers. Journal of Chemical Engineering of Japan 2006, 39, 68–76.CrossRefGoogle Scholar
  5. 5.
    Purwanto, A.; Wang, W. N.; Lenggoro, I. W.; Okuyama, K. Formation and luminescence enhancement of agglomerate-free YAG: Ce3+ submicrometer particles by flame-assisted spray pyrolysis. Journal of the Electrochemical Society 2007, 154, J91–J96.CrossRefGoogle Scholar
  6. 6.
    Grimm, S.; Schultz, M.; Barth, S.; Muller, R. Flame pyrolysis – A preparation route for ultrafine pure γ-Fe2O3 powders and the control of their particle size and properties. Journal of Materials Science 1997, 32, 1083–1092.CrossRefGoogle Scholar
  7. 7.
    Laine, R. M.; Marchal, J. C.; Sun, H. P.; Pan, X. Q. Nano-α-Al2O3 by liquid-feed flame spray pyrolysis. Nature Materials 2006, 5, 710–712.CrossRefGoogle Scholar
  8. 8.
    Tani, T.; Madler, L.; Pratsinis, S. E. Homogeneous ZnO nanoparticles by flame spray pyrolysis. Journal of Nanoparticle Research 2002, 4, 337–343.CrossRefGoogle Scholar
  9. 9.
    Purwanto, A.; Wang, W. N.; Ogi, T.; Lenggoro, I. W.; Tanabe, E.; Okuyama, K. High luminance YAG: Ce nanoparticles fabricated from urea added aqueous precursor by flame process. Journal of Alloys and Compounds 2008, 463, 350–357.CrossRefGoogle Scholar
  10. 10.
    Chang, H. W.; Lenggoro, I. W.; Okuyama, K.; Jang, H. D. Flame spray pyrolysis for preparing red-light-emitting, submicron-sized luminescent strontium titanate particles. Japanese Journal of Applied Physics Part 1 – Regular Papers Brief Communications & Review Papers 2006, 45, 967–973.Google Scholar
  11. 11.
    Chang, H. W.; Lenggoro, I. W.; Ogi, T.; Okuyama, K. Direct synthesis of barium magnesium aluminate blue phosphor particles via a flame route. Materials Letters 2005, 59, 1183–1187.CrossRefGoogle Scholar
  12. 12.
    Johannessen, T.; Koutsopoulos, S. One-step flame synthesis of an active Pt/TiO2 catalyst for SO2 oxidation – A possible alternative to traditional methods for parallel screening. Journal of Catalysis 2002, 205, 404–408.CrossRefGoogle Scholar
  13. 13.
    van Vegten, N.; Ferri, D.; Maciejewski, M.; Krumeich, F.; Baiker, A. Structural properties of flame-made Rh/Al2O3 and catalytic behavior in chemoselective hydrogenation. Journal of Catalysis 2007, 249, 269–277.CrossRefGoogle Scholar
  14. 14.
    Jensen, J. R.; Johannessen, T.; Wedel, S.; Livbjerg, H. A study of Cu/ZnO/Al2O3 methanol catalysts prepared by flame combustion synthesis. Journal of Catalysis 2003, 218, 67–77.CrossRefGoogle Scholar
  15. 15.
    Makela, J. M.; Keskinen, H.; Forsblom, T.; Keskinen, J. Generation of metal and metal oxide nanoparticles by liquid flame spray process. Journal of Materials Science 2004, 39, 2783–2788.CrossRefGoogle Scholar
  16. 16.
    Rohner, F.; Ernst, F. O.; Arnold, M.; Hibe, M.; Biebinger, R.; Ehrensperger, F.; Pratsinis, S. E.; Langhans, W.; Hurrell, R. F.; Zimmermann, M. B. Synthesis, characterization, and bioavailability in rats of ferric phosphate nanoparticles. Journal of Nutrition 2007, 137, 614–619.Google Scholar
  17. 17.
    Strobel, R.; Maciejewski, M.; Pratsinis, S. E.; Baiker, A. Unprecedented formation of metastable monoclinic BaCO3 nanoparticles. Thermochimica Acta 2006, 445, 23–26.CrossRefGoogle Scholar
  18. 18.
    Huber, M.; Stark, W. J.; Loher, S.; Maciejewski, M.; Krumeich, F.; Baiker, A. Flame synthesis of calcium carbonate nanoparticles. Chemical Communications 2005, 41, 648–650.Google Scholar
  19. 19.
    Grass, R. N.; Stark, W. J. Flame synthesis of calcium-, strontium-, barium fluoride nanoparticles and sodium chloride. Chemical Communications 2005, 41, 1767–1769.Google Scholar
  20. 20.
    Kammler, H. K.; Madler, L.; Pratsinis, S. E. Flame synthesis of nanoparticles. Chemical Engineering & Technology 2001, 24, 583–596.CrossRefGoogle Scholar
  21. 21.
    Gutsch, A.; Muhlenweg, H.; Kramer, M. Tailor-made nanoparticles via gas-phase synthesis. Small 2005, 1, 30–46.CrossRefGoogle Scholar
  22. 22.
    Gutsch, A.; Averdung, J.; Muhlenweg, H. From technological development to the successful nanotechnological product. Chemie Ingenieur Technik 2005, 77, 1377–1392.CrossRefGoogle Scholar
  23. 23.
    Chang, H.; Lenggoro, I. W.; Okuyama, K.; Kim, T. O. Continuous single-step fabrication of nonaggregated, size-controlled and cubic nanocrystalline Y2O3: Eu3+ phosphors using flame spray pyrolysis. Japanese Journal of Applied Physics Part 1 – Regular Papers Short Notes & Review Papers 2004, 43, 3535–3539.Google Scholar
  24. 24.
    Brewster, J. H.; Kodas, T. T. Generation of unagglomerated, dense, BaTiO3 particles by flame-spray pyrolysis. Aiche Journal 1997, 43, 2665–2669.CrossRefGoogle Scholar
  25. 25.
    Schaber, P. A.; Colson, J.; Higgins, S.; Thielen, D.; Anspach, B.; Brauer, J. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochimica Acta 2004, 424, 131–142.CrossRefGoogle Scholar
  26. 26.
    Purwanto, A.; Wang, W. N.; Lenggoro, I. W.; Okuyama, K. Formation of BaTiO3 nanoparticles from an aqueous precursor by flame-assisted spray pyrolysis. Journal of the European Ceramic Society 2007, 27, 4489–4497.CrossRefGoogle Scholar
  27. 27.
    Terashi, Y.; Purwanto, A.; Wang, W. N.; Iskandar, F.; Okuyama, K. Role of urea addition in the preparation of tetragonal BaTiO3 nanoparticles using flame-assisted spray pyrolysis. Journal of the European Ceramic Society 2008, 28, 2573–2580.CrossRefGoogle Scholar
  28. 28.
    Widiyastuti, W.; Purwanto, A.; Wang, W. N.; Iskandar, F.; Setyawan, H.; Okuyama, K. Nanoparticle formation through solid-fed flame synthesis: experiment and modeling. AIChE Journal 2009, 55, 885–895.CrossRefGoogle Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.Department of Chemical EngineeringHiroshima UniversityHigashi HiroshimaJapan
  2. 2.Department of Chemical EngineeringSebelas Maret UniversitySurakartaIndonesia

Personalised recommendations