Advertisement

Low-pressure Spray Pyrolysis

  • W.-N. WangEmail author
  • A. Purwanto
  • K. Okuyama
Chapter

Abstract

Low-pressure spray pyrolysis (LPSP) has been developed by generating micrometer-sized droplets under low-pressure environment. Unlike the conventional spray pyrolysis (CSP), a variety of nanoparticles, ranging from metals, metal oxides, to composite materials can be directly formed in the LPSP process, which was considered to follow a one-droplet-to-multiple-particles (ODMP) principle. The low-pressure is the direct driving force for the formation of nanoparticles. Inside the LPSP process, the micrometer-sized droplets are assumed to undergo rapid solvent evaporation upon entering the low-pressure environment that induces a fast nucleation rate to form primary nanocrystals. The aggregation of these nanocrystals is limited due to very short residence time under low-pressure conditions. In addition, the gas evolution due to thermal reactions and pressures inside the droplets/dried particles caused by high drying rates, are considered to be the main reasons for the fragmentation of primary nanocrystals into final nanoparticles.

Keywords

Agglomeration Brownian motion Evaporative cooling Fragmentation Nucleation 

References

  1. 1.
    K. Okuyama, I. W. Lenggoro: Preparation of nanoparticles via spray route, Chem. Eng. Sci. 58 (3–6), 537–547 (2003).Google Scholar
  2. 2.
    W.-N. Wang, W. Widiyastuti, I. W. Lenggoro, T. O. Kim, K. Okuyama: Photoluminescence optimization of luminescent nanocomposites fabricated by spray pyrolysis of a colloid-solution precursor, J. Electrochem. Soc. 154 (4), J121–J128 (2007).CrossRefGoogle Scholar
  3. 3.
    W.-N. Wang, I. W. Lenggoro, K. Okuyama: Nanoparticle Preparation by Spray Route. In Encyclopedia of Nanoscience and Nanotechnology, 2nd ed.; Nalwa, H. S., Ed. American Scientific Publishers: Stevenson Ranch (in press).Google Scholar
  4. 4.
    T. T. Kodas, M. Hampdent-Smith: Aerosol Processing of Materials. Wiley-VCH: New York (1999).Google Scholar
  5. 5.
    M. Eslamian, N. Ashgriz: Effect of precursor, ambient pressure, and temperature on the morphology, crystallinity, and decomposition of powders prepared by spray pyrolysis and drying, Powder Technol. 167 (3), 149–159 (2006a).CrossRefGoogle Scholar
  6. 6.
    M. Eslamian, N. Ashgriz: Effect of reactor ambient pressure on the morphology of spray dried magnesium sulphate powders, Can. J. Chem. Eng. 84 (5), 581–589 (2006b).CrossRefGoogle Scholar
  7. 7.
    M. Eslamian, N. Ashgriz: Evaporation and evolution of suspended solution droplets at atmospheric and reduced pressures, Dry Technol. 25 (4–6), 999–1010 (2007).CrossRefGoogle Scholar
  8. 8.
    Y. C. Kang, S. B. Park: A high-volume spray aerosol generator producing small droplets for low-pressure applications, J. Aerosol Sci. 26 (7), 1131–1138 (1995).CrossRefGoogle Scholar
  9. 9.
    W.-N. Wang, Y. Itoh, I. W. Lenggoro, K. Okuyama: Nickel and nickel oxide nanoparticles prepared from nickel nitrate hexahydrate by a low pressure spray pyrolysis, Mat. Sci. Eng. B. 111 (1), 69–76 (2004).CrossRefGoogle Scholar
  10. 10.
    W.-N. Wang: Synthesis of Nanoparticles via Spray Route under Low Pressure Conditions. Doctoral Dissertation, Hiroshima University, Higashi Hiroshima (2006).Google Scholar
  11. 11.
    Y. C. Kang, S. B. Park: Preparation of nanometre size oxide particles using filter expansion aerosol generator, J. Mater. Sci. 31 (9), 2409–2416 (1996).CrossRefGoogle Scholar
  12. 12.
    I. W. Lenggoro, Y. Itoh, N. Iida, K. Okuyama: Control of size and morphology in NiO particles prepared by a low-pressure spray pyrolysis, Mater. Res. Bull. 38 (14), 1819–1827 (2003).CrossRefGoogle Scholar
  13. 13.
    W.-N. Wang, I. W. Lenggoro, Y. Terashi, T. O. Kim, K. Okuyama: One-step synthesis of titanium oxide nanoparticles by spray pyrolysis of organic precursors, Mat. Sci. Eng. B. 123 (3), 194–202 (2005a).CrossRefGoogle Scholar
  14. 14.
    Y. C. Kang, Y. S. Chung, S. B. Park: Preparation of YAG:Europium red phosphors by spray pyrolysis using a filter-expansion aerosol generator, J. Am. Ceram. Soc. 82 (8), 2056–2060 (1999).CrossRefGoogle Scholar
  15. 15.
    Y. C. Kang, S. B. Park: Zn2SiO4:Mn phosphor particles prepared by spray pyrolysis using a filter expansion aerosol generator, Mater. Res. Bull. 35 (7), 1143–1151 (2000).CrossRefGoogle Scholar
  16. 16.
    I. W. Lenggoro, Y. Itoh, K. Okuyama, T. O. Kim: Nanoparticles of a doped oxide phosphor prepared by direct-spray pyrolysis, J. Mater. Res. 19 (12), 3534–3539 (2004).CrossRefGoogle Scholar
  17. 17.
    W.-N. Wang, I. W. Lenggoro, Y. Terashi, Y. C. Wang, K. Okuyama: Direct synthesis of barium titanate nanoparticles via a low pressure spray pyrolysis method, J. Mater. Res. 20 (10), 2873–2882 (2005b).CrossRefGoogle Scholar
  18. 18.
    W.-N. Wang, I. W. Lenggoro, K. Okuyama, Y. Terashi, Y. C. Wang: Effects of ethanol addition and Ba/Ti ratios on preparation of barium titanate nanocrystals via a spray pyrolysis method, J. Am. Ceram. Soc. 89 (3), 888–893 (2006).CrossRefGoogle Scholar
  19. 19.
    Y. Itoh, M. Abdullah, K. Okuyama: Direct preparation of nonagglomerated indium tin oxide nanoparticles using various spray pyrolysis methods, J. Mater. Res. 19 (4), 1077–1086 (2004).CrossRefGoogle Scholar
  20. 20.
    T. Ogi, F. Iskandar, Y. Itoh, K. Okuyama: Characterization of dip-coated ITO films derived from nanoparticles synthesized by low-pressure spray pyrolysis, J. Nanopart. Res. 8 (3–4), 343–350 (2006).CrossRefGoogle Scholar
  21. 21.
    D. Hidayat, T. Ogi, F. Iskandar, K. Okuyama: Single crystal ZnO:Al nanoparticles directly synthesized using low-pressure spray pyrolysis, Mater. Sci. Eng. B. 151 (3), 231–237 (2008).CrossRefGoogle Scholar
  22. 22.
    W.-N. Wang, I. W. Lenggoro, K. Okuyama: Dispersion and aggregation of nanoparticles derived from colloidal droplets under low-pressure conditions, J. Colloid Interface Sci. 288 (2), 423–431 (2005c).CrossRefGoogle Scholar
  23. 23.
    S. P. Fisenko, W.-N. Wang, I. W. Lenggoro, K. Okyuama: Evaporative cooling of micron-sized droplets in a low-pressure aerosol reactor, Chem. Eng. Sci. 61 (18), 6029–6034 (2006).CrossRefGoogle Scholar
  24. 24.
    T. Ogi, D. Hidayat, F. Iskandar, A. Purwanto, K. Okuyama: Direct synthesis of highly crystalline transparent conducting oxide nanoparticles by low pressure spray pyrolysis. Adv. Powder Technol. 20 (2), 203–209 (2009).CrossRefGoogle Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.Department of Chemical EngineeringHiroshima UniversityHigashi HiroshimaJapan
  2. 2.Department of Energy, Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisUSA

Personalised recommendations