Melt Atomization

  • B. ZhengEmail author
  • E. J. Lavernia


The science and technology underlying the process of melt atomization is introduced, paying particular attention to relevant thermal, solidification and other transport phenomena. Melt atomization has now been developed as one of major produce methods for various metal and alloy powder, and hence it is of both scientific and technological interest. The mechanisms of melt disintegration, the design of typical atomization devices, the influence of key process parameters, the thermal transport in the atomized droplets, and the characteristics of the size distribution are briefly described and discussed.


Atomization Particles Processing parameters Transport phenomena 


  1. 1.
    B. Zheng, Y. Lin, Y. Zhou, E. J. Lavernia: Gas atomization of amorphous aluminum: Part II. Experimental investigation, Metall. Mater. Trans. B 40B, 995–1004 (2009).CrossRefGoogle Scholar
  2. 2.
    J. J. Dunkley: Atomization, ASM Handbook, Powder Metal Technologies and Applications, Vol. 7, ASM International, Materials Park, 35–52 (1998).Google Scholar
  3. 3.
    E.J. Lavernia, Y. Wu: Spray Atomization and Deposition, John Wiley & Sons, Inc., New York, (1996).Google Scholar
  4. 4.
    W. Marriott: British patent 3322 (1872).Google Scholar
  5. 5.
    A. Lawley: Rapid Solidification Technology Source Book, ASM, Materials Park, (1983).Google Scholar
  6. 6.
    R. J. Grandzol, J. A. Tallmadge: Effect of jet angle of water atomization, Int. J. Powder Metall. Powder Technol., 11, 103–116 (1975).Google Scholar
  7. 7.
    E. Klar, W. M. Shafer: Powder Metallurgy for High Performance Application, Syracuse University Press, Syracuse, New York, (1972).Google Scholar
  8. 8.
    A. Lawley: Atomization, the Production of Metal Powder, MPIF, Princeton, New Jersey, (1992).Google Scholar
  9. 9.
    G. Rai, E. J. Lavernia, N. J. Grant: Powder size and distribution in ultrasonic gas atomization, JOM 37, 22–26 (1985).Google Scholar
  10. 10.
    I. E. Anderson, R. S. Figliola, H. Morton: Flow mechanisms in high pressure gas atomization, Mater. Sci. Eng. A, 148, 101–114 (1991).CrossRefGoogle Scholar
  11. 11.
    M. K. Veistinen, E. J. Lavernia, J. Baram, N. J. Grant: Jet behavior in ultrasonic gas atomization, Int. J. Powder Metall. 25, 89–92 (1989).Google Scholar
  12. 12.
    N. Dombrowski, W. R. Johns: The aerodynamic instability and disintegration of viscous liquid sheets, Chem. Eng. Sci. 18, 203–214 (1963).CrossRefGoogle Scholar
  13. 13.
    X. Liang, E. J. Lavernia: Solidification and microstructure evolution during spray atomization and deposition of Ni3Al, Mater. Sci. Eng. A 161, 221–235 (1993).CrossRefGoogle Scholar
  14. 14.
    P. S. Grant, B. Cantor, L. Katgerman: Modelling of droplet dynamic and thermal histories during spray forming – I. Individual droplet behaviour, Acta Metall. Mater. 41, 3097–3108 (1993).Google Scholar
  15. 15.
    K. Lubanska: Correlation of spray ring data for gas atomization of liquid metal, JOM 22, 45–49 (1970).Google Scholar
  16. 16.
    E. J. Lavernia, T. S. Srivatsan, R. H. Rangel: Atomization of alloy powders, Atomization Sprays 2, 253–274 (1992).Google Scholar
  17. 17.
    A. Unal: Liquid break-up in gas atomization of fine aluminum powders, Metall. Trans. B 20B, 61–69 (1989).CrossRefGoogle Scholar
  18. 18.
    E. L. Crow, K. Shimizu: Lognormal Distributions: Theory and Applications, Marcel Dekker, New York, (1988).zbMATHGoogle Scholar
  19. 19.
    J. E. Smith, M. L. Jordan: Mathematical and graphical interpretation of the log-normal law for particle size distribution, J. Colloid Sci. 19, 549–559 (1964).CrossRefGoogle Scholar
  20. 20.
    A. H. Lefebvre: Atomizations and Spray, Taylor & Francis, Bristol, 85 (1989).Google Scholar
  21. 21.
    A. Lawley: Atomization: the Production of Metal Powders, MPIF, Princeton, 74 (1992).Google Scholar
  22. 22.
    W. E. Ranz, W. R. Marshall: Evaporation from drops – Part I, Chem. Eng. Prog. 48, 141–146 (1952).Google Scholar
  23. 23.
    Q. Q. Lu, J. R. Fontaine, G. Aubertin: Numerical study of the solid particle motion in grid-generated turbulent flows. Int. J. Heat Mass Transf. 36 79–87 (1993).CrossRefGoogle Scholar
  24. 24.
    R. Clift, J. R. Grace, M. E. Weber: Bubbles, drops and particles, Academic Press, New York, (1978).Google Scholar
  25. 25.
    B. Zheng, Y. Lin, Y. Zhou and E. J. Lavernia: Gas atomization of amorphous aluminum: Part I. Thermal behavior calculation, Metall. Trans. B 40B, 768–778 (2009).Google Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations