Advertisement

Spray Modeling and Predictive Simulations in Realistic Gas-Turbine Engines

  • S. V. ApteEmail author
  • P. Moin
Chapter

Abstract

Large-eddy simulation (LES) is a promising technique for accurate prediction of reacting multiphase flows in practical gas-turbine engines. These combustors involve complex physical phenomena of primary atomization of liquid sheet/jet and secondary breakup, droplet evaporation, turbulent mixing of fuel vapor with oxidizer, and combustion dynamics. This chapter summarizes advances made in modeling spray fields with LES of turbulent reacting flows in realistic combustor configurations. Specifically, details of subgrid models for droplet dynamics including breakup, evaporation, deformation, droplet dispersion, and finite-size droplets are presented in the context of an Eulerian–Lagrangian simulation methodology on unstructured grids. Effectiveness of LES with advanced spray models in predicting spray behavior in a patternation study of realistic Pratt and Whitney injector is described.

Keywords

Complex geometries Gas turbines LES Sprays Stochastic models 

Notes

Acknowledgments

Support for this work was provided by the US Department of Energy under the Advanced Scientific Computing (ASC) program. The computer resources at San Diego Supercomputing Center are greatly appreciated. We are indebted to Profs. Parviz Moin, Krishnan Mahesh, Gianluca Iaccarino, Brian Helenbrook, Heinz Pitsch, Drs. Frank Ham and Joeseph Oefelein, and the combustor group at Pratt & Whitney for their help and support at various stages of this work. We also thank Mr. Daniel Peterson for editing this document.

References

  1. 1.
    A. Brankovic, L. Porter, R. McKinney, H. Ouyang, J. Kennedy, R. Madabhushi, M. Colket, Comparison of measurements and predictions of flow in a gas turbine engine fuel nozzle, in: AIAA, Aerospace Sciences Meeting and Exhibit, 38th, Reno, 2000.Google Scholar
  2. 2.
    P. Moin, S. Apte, Large-Eddy simulation of realistic gas turbine-combustors, AIAA Journal 44 (4) (2006) 698–708.CrossRefGoogle Scholar
  3. 3.
    M. Ruger, S. Hohmann, M. Sommerfeld, G. Kohnen, Euler/Lagrange calculations of turbulent sprays: the effect of droplet collisions and coalescence, Atomization and Sprays 10 (1) (2000) 47–82.Google Scholar
  4. 4.
    D. Schmidt, L. Chiappetta, G. Goldin, R. Madabhushi, Transient multidimensional modeling of air-blast atomizers, Atomization and Sprays 13 (4) (2003) 373–394.CrossRefGoogle Scholar
  5. 5.
    C. Pierce, P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, Journal of Fluid Mechanics 504 (2004) 73–97.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    N. Patel, M. KIrtas, V. Sankaran, S. Menon, Simulation of spray combustion in a lean-direct injection combustor, Proceedings of the Combustion Institute 31 (2) (2007) 2327–2334.CrossRefGoogle Scholar
  7. 7.
    N. Patel, S. Menon, Simulation of spray–turbulence–flame interactions in a lean direct injection combustor, Combustion and Flame 153 (1–2) (2008) 228–257.CrossRefGoogle Scholar
  8. 8.
    R. Mittal, P. Moin, Stability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows, AIAA Journal 35 (8) (1997) 1415–1417.zbMATHCrossRefGoogle Scholar
  9. 9.
    K. Mahesh, G. Constantinescu, P. Moin, A numerical method for large-eddy simulation in complex geometries, Journal of Computational Physics 197 (1) (2004) 215–240.zbMATHCrossRefGoogle Scholar
  10. 10.
    K. Mahesh, G. Constantinescu, S. Apte, G. Iaccarino, F. Ham, P. Moin, Large-Eddy simulation of reacting turbulent flows in complex geometries, Journal of Applied Mechanics 73 (2006) 374.zbMATHCrossRefGoogle Scholar
  11. 11.
    F. Ham, S. Apte, G. Iaccarino, X. Wu, M. Herrmann, G. Constantinescu, K. Mahesh, P. Moin, Unstructured LES of reacting multiphase flows in realistic gas-turbine combustors. Annual Research Briefs 2003, Center for Turbulence Research, Stanford, 2003.Google Scholar
  12. 12.
    Tanguy, S., Berlemont, A., Application of a level set method for simulation of droplet collisions, International Journal of Multiphase Flow 31 (2005) 1015–1035.zbMATHGoogle Scholar
  13. 13.
    T. Menard, P. Beau, S. Tanguy, F. Demoulin, A. Berlemont, Primary break-up: DNS of liquid jet to improve atomization modelling, WIT Transactions on Engineering Sciences 50 (2005) 343.MathSciNetGoogle Scholar
  14. 14.
    T. Menard, S. Tanguy, A. Berlemont, Coupling level set/VOF/ghost fluid methods: validation and application to 3D simulation of the primary break-up of a liquid jet, International Journal of Multiphase Flow 33 (5) (2007) 510–524.CrossRefGoogle Scholar
  15. 15.
    M. Gorokhovski, M. Herrmann, Modeling primary atomization, Annual Review of Fluid Mechanics 40 (2008) 343–366.CrossRefMathSciNetGoogle Scholar
  16. 16.
    J. Dukowicz, A particle-fluid numerical model for liquid sprays, Journal of Computational Physics 35 (1980) 229.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    P. ORourke, A. Amsden, The TAB method for numerical calculation of spray droplet breakup, SAE Technical Paper 872089, 1987, and in: International fuels and lubricants meeting and exposition, Vol. 2, 1987.Google Scholar
  18. 18.
    R. Reitz, Modeling atomization processes in high-pressure vaporizing sprays, Atomization and Spray 3 (1987) 307.Google Scholar
  19. 19.
    P. O’Rourke, The KIVA computer program for multidimensional chemically reactive fluid flows with fuel sprays, Lecture Notes in Physics 241 (1985) 74.CrossRefGoogle Scholar
  20. 20.
    P. O’Rourke, F. Bracco, Modeling of droplet interactions in thick sprays and a comparison with experiments, in: Stratified charge automotive engines conference, mechanical engineering publications, London, 1980.Google Scholar
  21. 21.
    S. Apte, K. Mahesh, P. Moin, J. Oefelein, Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor, International Journal of Multiphase Flow 29 (8) (2003) 1311–1331.zbMATHCrossRefGoogle Scholar
  22. 22.
    P. Moin, K. Squires, W. Cabot, S. Lee, A dynamic subgrid-scale model for compressible turbulence and scalar transport, Physics of Fluids A 3 (11) (1991) 2746–2757.zbMATHCrossRefGoogle Scholar
  23. 23.
    M. Germano, U. Piomelli, P. Moin, W. Cabot, A dynamic subgrid-scale eddy viscosity model, Physics of Fluids A: Fluid Dynamics 3 (1991) 1760.zbMATHCrossRefGoogle Scholar
  24. 24.
    C. Crowe, M. Sommerfeld, Y. Tsuji, Multiphase flows with droplets and particles, CRC Press, Boca Raton, 1998.Google Scholar
  25. 25.
    B. Helenbrook, C. Edwards, Quasi-steady deformation and drag of uncontaminated liquid drops, International Journal of Multiphase Flow 28 (10) (2002) 1631–1657.zbMATHCrossRefGoogle Scholar
  26. 26.
    B. Helenbrook, A two-fluid spectral-element method, Computer Methods in Applied Mechanics and Engineering 191 (3–5) (2001) 273–294.zbMATHGoogle Scholar
  27. 27.
    G. Faeth, Current status of droplet and liquid combustion, in: Combustion Institute, Spring Technical Meeting, Cleveland, Paper, 1977, p. 29.Google Scholar
  28. 28.
    G. Faeth, Evaporation and combustion of sprays, Progress in Energy and Combustion Science 7 (1) (1983) 1–76.CrossRefGoogle Scholar
  29. 29.
    C. Law, Recent advances in droplet vaporization and combustion, Progress in Energy and Combustion Science 8 (3) (1982) 171–201.CrossRefGoogle Scholar
  30. 30.
    W. Sirignano, C. Law, Transient heating and liquid-phase mass diffusion in fuel droplet vaporization, in: Evaporation-Combustion of Fuels: A Symposium, American Chemical Society, Lisbon, 1978.Google Scholar
  31. 31.
    R. Miller, K. Harstad, J. Bellan, Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations, International Journal of Multiphase Flow 24 (6) (1998) 1025–1055.zbMATHCrossRefGoogle Scholar
  32. 32.
    M. Gorokhovski, V. Saveliev, Analyses of Kolmogorovs model of breakup and its application into Lagrangian computation of liquid sprays under air-blast atomization, Physics of Fluids 15 (2003)Google Scholar
  33. 33.
    S. Apte, M. Gorokhovski, P. Moin, LES of atomizing spray with stochastic modeling of secondary breakup, International Journal of Multiphase Flow 29 (9) (2003) 1503–1522.zbMATHCrossRefGoogle Scholar
  34. 34.
    U. Shavit, N. Chigier, Fractal dimensions of liquid jet interface under breakup, Atomization and Sprays 5 (6) (1995) 525–544.Google Scholar
  35. 35.
    W. Zhou, Z. Yu, Multifractality of drop breakup in the air-blast nozzle atomization process, Physical Review-Series E. 63 (1, Part A) (2001) 16302–16302.MathSciNetGoogle Scholar
  36. 36.
    S. Apte, K. Mahesh, M. Gorokhovski, P. Moin, Stochastic modeling of atomizing spray in a complex swirl injector using large eddy simulation, Proceedings of the Combustion Institute 32 (2) (2009) 2257–2266.CrossRefGoogle Scholar
  37. 37.
    M. Gorokhovski, J. Jouanguy, A. Chtab, Simulation of air-blast atomization:floating guardstatistic particle method for conditioning of LES computation: stochastic models of break-up and coalescence, in: Proceedings of the international conference on liquid atomization and spray systems, 10th (ICLASS-2006), Madison, 2006.Google Scholar
  38. 38.
    J. Bellan, Perspectives on large Eddy simulations for sprays: issues and solutions, in: Eighth international conference on liquid atomization and spray systems, Pasadena, 2000.Google Scholar
  39. 39.
    J. Pozorski, S. Apte, Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion, International Journal of Multiphase Flow 35 (2008) 118–128.CrossRefGoogle Scholar
  40. 40.
    M. Van der Hoef, M. van Sint Annaland, N. Deen, J. Kuipers, Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy, Annual Review of Fluids Mechanics 40 (2008) 47–70.CrossRefMathSciNetGoogle Scholar
  41. 41.
    A. Vreman, B. Geurts, N. Deen, J. Kuipers, Large-eddy simulation of a particle-laden turbulent channel flow, Direct and Large-Eddy Simulation V, Munich, 2003, pp. 271–278.Google Scholar
  42. 42.
    D. Snider, An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows, Journal of Computational Physics 170 (2) (2001) 523–549.zbMATHCrossRefGoogle Scholar
  43. 43.
    D. Thomas, Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles, Journal of Colloid Science 20 (1965) 267–277.CrossRefGoogle Scholar
  44. 44.
    S. Apte, K. Mahesh, T. Lundgren, Accounting for finite-size effects in simulations of disperse particle-laden flows, International Journal of Multiphase Flow 34 (3) (2008) 260–271.CrossRefGoogle Scholar
  45. 45.
    S. Apte, K. Mahesh, P. Moin, Large-eddy simulation of evaporating spray in a coaxial combustor, Proceedings of the Combustion Institute 32 (2) (2009) 2247–2256.CrossRefGoogle Scholar
  46. 46.
    S. V. Apte, B. Helenbrook, P. Moin, Modeling effects of droplet deformation and breakup in realistic combustors, in: Proceedings of the 16th conference of liquid atomization and spray systems, Monterey, 2003.Google Scholar
  47. 47.
    Center for Integrated Turbulence Simulations, (2003–2005), Annual Report, http://www.stanford.edu/group/cits/pubs/reports.html.
  48. 48.
    H. Pitsch, L. Duchamp de Lageneste, Large-eddy simulation of premixed turbulent combustion using a level-set approach, Proceedings of the Combustion Institute 29 (2) (2002) 2001–2008.CrossRefGoogle Scholar
  49. 49.
    C. Wall, C. Pierce, P. Moin, A semi-implicit method for resolution of acoustic waves in low Mach number flows, Journal of Computational Physics 181 (2) (2002) 545–563.zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    F. Ham, An effcient scheme for large eddy simulation of low-Ma combustion in complex configurations, Annual research briefs, center for turbulence research, Stanford University, 2007.Google Scholar
  51. 51.
    G. Iaccarino, F. Ham, LES on Cartesian grids with anisotropic Refinement, Lecture Notes in Computational Science and Engineering 56 (2007) 219.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.School of Mechanical, Industrial and Manufacturing EngineeringOregon State UniversityCorvallisUSA

Personalised recommendations