Skip to main content

Spray Modeling and Predictive Simulations in Realistic Gas-Turbine Engines

  • Chapter
  • First Online:
Handbook of Atomization and Sprays

Abstract

Large-eddy simulation (LES) is a promising technique for accurate prediction of reacting multiphase flows in practical gas-turbine engines. These combustors involve complex physical phenomena of primary atomization of liquid sheet/jet and secondary breakup, droplet evaporation, turbulent mixing of fuel vapor with oxidizer, and combustion dynamics. This chapter summarizes advances made in modeling spray fields with LES of turbulent reacting flows in realistic combustor configurations. Specifically, details of subgrid models for droplet dynamics including breakup, evaporation, deformation, droplet dispersion, and finite-size droplets are presented in the context of an Eulerian–Lagrangian simulation methodology on unstructured grids. Effectiveness of LES with advanced spray models in predicting spray behavior in a patternation study of realistic Pratt and Whitney injector is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Brankovic, L. Porter, R. McKinney, H. Ouyang, J. Kennedy, R. Madabhushi, M. Colket, Comparison of measurements and predictions of flow in a gas turbine engine fuel nozzle, in: AIAA, Aerospace Sciences Meeting and Exhibit, 38th, Reno, 2000.

    Google Scholar 

  2. P. Moin, S. Apte, Large-Eddy simulation of realistic gas turbine-combustors, AIAA Journal 44 (4) (2006) 698–708.

    Article  Google Scholar 

  3. M. Ruger, S. Hohmann, M. Sommerfeld, G. Kohnen, Euler/Lagrange calculations of turbulent sprays: the effect of droplet collisions and coalescence, Atomization and Sprays 10 (1) (2000) 47–82.

    Google Scholar 

  4. D. Schmidt, L. Chiappetta, G. Goldin, R. Madabhushi, Transient multidimensional modeling of air-blast atomizers, Atomization and Sprays 13 (4) (2003) 373–394.

    Article  Google Scholar 

  5. C. Pierce, P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, Journal of Fluid Mechanics 504 (2004) 73–97.

    Article  MATH  MathSciNet  Google Scholar 

  6. N. Patel, M. KIrtas, V. Sankaran, S. Menon, Simulation of spray combustion in a lean-direct injection combustor, Proceedings of the Combustion Institute 31 (2) (2007) 2327–2334.

    Article  Google Scholar 

  7. N. Patel, S. Menon, Simulation of spray–turbulence–flame interactions in a lean direct injection combustor, Combustion and Flame 153 (1–2) (2008) 228–257.

    Article  Google Scholar 

  8. R. Mittal, P. Moin, Stability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows, AIAA Journal 35 (8) (1997) 1415–1417.

    Article  MATH  Google Scholar 

  9. K. Mahesh, G. Constantinescu, P. Moin, A numerical method for large-eddy simulation in complex geometries, Journal of Computational Physics 197 (1) (2004) 215–240.

    Article  MATH  Google Scholar 

  10. K. Mahesh, G. Constantinescu, S. Apte, G. Iaccarino, F. Ham, P. Moin, Large-Eddy simulation of reacting turbulent flows in complex geometries, Journal of Applied Mechanics 73 (2006) 374.

    Article  MATH  Google Scholar 

  11. F. Ham, S. Apte, G. Iaccarino, X. Wu, M. Herrmann, G. Constantinescu, K. Mahesh, P. Moin, Unstructured LES of reacting multiphase flows in realistic gas-turbine combustors. Annual Research Briefs 2003, Center for Turbulence Research, Stanford, 2003.

    Google Scholar 

  12. Tanguy, S., Berlemont, A., Application of a level set method for simulation of droplet collisions, International Journal of Multiphase Flow 31 (2005) 1015–1035.

    MATH  Google Scholar 

  13. T. Menard, P. Beau, S. Tanguy, F. Demoulin, A. Berlemont, Primary break-up: DNS of liquid jet to improve atomization modelling, WIT Transactions on Engineering Sciences 50 (2005) 343.

    MathSciNet  Google Scholar 

  14. T. Menard, S. Tanguy, A. Berlemont, Coupling level set/VOF/ghost fluid methods: validation and application to 3D simulation of the primary break-up of a liquid jet, International Journal of Multiphase Flow 33 (5) (2007) 510–524.

    Article  Google Scholar 

  15. M. Gorokhovski, M. Herrmann, Modeling primary atomization, Annual Review of Fluid Mechanics 40 (2008) 343–366.

    Article  MathSciNet  Google Scholar 

  16. J. Dukowicz, A particle-fluid numerical model for liquid sprays, Journal of Computational Physics 35 (1980) 229.

    Article  MATH  MathSciNet  Google Scholar 

  17. P. ORourke, A. Amsden, The TAB method for numerical calculation of spray droplet breakup, SAE Technical Paper 872089, 1987, and in: International fuels and lubricants meeting and exposition, Vol. 2, 1987.

    Google Scholar 

  18. R. Reitz, Modeling atomization processes in high-pressure vaporizing sprays, Atomization and Spray 3 (1987) 307.

    Google Scholar 

  19. P. O’Rourke, The KIVA computer program for multidimensional chemically reactive fluid flows with fuel sprays, Lecture Notes in Physics 241 (1985) 74.

    Article  Google Scholar 

  20. P. O’Rourke, F. Bracco, Modeling of droplet interactions in thick sprays and a comparison with experiments, in: Stratified charge automotive engines conference, mechanical engineering publications, London, 1980.

    Google Scholar 

  21. S. Apte, K. Mahesh, P. Moin, J. Oefelein, Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor, International Journal of Multiphase Flow 29 (8) (2003) 1311–1331.

    Article  MATH  Google Scholar 

  22. P. Moin, K. Squires, W. Cabot, S. Lee, A dynamic subgrid-scale model for compressible turbulence and scalar transport, Physics of Fluids A 3 (11) (1991) 2746–2757.

    Article  MATH  Google Scholar 

  23. M. Germano, U. Piomelli, P. Moin, W. Cabot, A dynamic subgrid-scale eddy viscosity model, Physics of Fluids A: Fluid Dynamics 3 (1991) 1760.

    Article  MATH  Google Scholar 

  24. C. Crowe, M. Sommerfeld, Y. Tsuji, Multiphase flows with droplets and particles, CRC Press, Boca Raton, 1998.

    Google Scholar 

  25. B. Helenbrook, C. Edwards, Quasi-steady deformation and drag of uncontaminated liquid drops, International Journal of Multiphase Flow 28 (10) (2002) 1631–1657.

    Article  MATH  Google Scholar 

  26. B. Helenbrook, A two-fluid spectral-element method, Computer Methods in Applied Mechanics and Engineering 191 (3–5) (2001) 273–294.

    MATH  Google Scholar 

  27. G. Faeth, Current status of droplet and liquid combustion, in: Combustion Institute, Spring Technical Meeting, Cleveland, Paper, 1977, p. 29.

    Google Scholar 

  28. G. Faeth, Evaporation and combustion of sprays, Progress in Energy and Combustion Science 7 (1) (1983) 1–76.

    Article  Google Scholar 

  29. C. Law, Recent advances in droplet vaporization and combustion, Progress in Energy and Combustion Science 8 (3) (1982) 171–201.

    Article  Google Scholar 

  30. W. Sirignano, C. Law, Transient heating and liquid-phase mass diffusion in fuel droplet vaporization, in: Evaporation-Combustion of Fuels: A Symposium, American Chemical Society, Lisbon, 1978.

    Google Scholar 

  31. R. Miller, K. Harstad, J. Bellan, Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations, International Journal of Multiphase Flow 24 (6) (1998) 1025–1055.

    Article  MATH  Google Scholar 

  32. M. Gorokhovski, V. Saveliev, Analyses of Kolmogorovs model of breakup and its application into Lagrangian computation of liquid sprays under air-blast atomization, Physics of Fluids 15 (2003)

    Google Scholar 

  33. S. Apte, M. Gorokhovski, P. Moin, LES of atomizing spray with stochastic modeling of secondary breakup, International Journal of Multiphase Flow 29 (9) (2003) 1503–1522.

    Article  MATH  Google Scholar 

  34. U. Shavit, N. Chigier, Fractal dimensions of liquid jet interface under breakup, Atomization and Sprays 5 (6) (1995) 525–544.

    Google Scholar 

  35. W. Zhou, Z. Yu, Multifractality of drop breakup in the air-blast nozzle atomization process, Physical Review-Series E. 63 (1, Part A) (2001) 16302–16302.

    MathSciNet  Google Scholar 

  36. S. Apte, K. Mahesh, M. Gorokhovski, P. Moin, Stochastic modeling of atomizing spray in a complex swirl injector using large eddy simulation, Proceedings of the Combustion Institute 32 (2) (2009) 2257–2266.

    Article  Google Scholar 

  37. M. Gorokhovski, J. Jouanguy, A. Chtab, Simulation of air-blast atomization:floating guardstatistic particle method for conditioning of LES computation: stochastic models of break-up and coalescence, in: Proceedings of the international conference on liquid atomization and spray systems, 10th (ICLASS-2006), Madison, 2006.

    Google Scholar 

  38. J. Bellan, Perspectives on large Eddy simulations for sprays: issues and solutions, in: Eighth international conference on liquid atomization and spray systems, Pasadena, 2000.

    Google Scholar 

  39. J. Pozorski, S. Apte, Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion, International Journal of Multiphase Flow 35 (2008) 118–128.

    Article  Google Scholar 

  40. M. Van der Hoef, M. van Sint Annaland, N. Deen, J. Kuipers, Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy, Annual Review of Fluids Mechanics 40 (2008) 47–70.

    Article  MathSciNet  Google Scholar 

  41. A. Vreman, B. Geurts, N. Deen, J. Kuipers, Large-eddy simulation of a particle-laden turbulent channel flow, Direct and Large-Eddy Simulation V, Munich, 2003, pp. 271–278.

    Google Scholar 

  42. D. Snider, An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows, Journal of Computational Physics 170 (2) (2001) 523–549.

    Article  MATH  Google Scholar 

  43. D. Thomas, Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles, Journal of Colloid Science 20 (1965) 267–277.

    Article  Google Scholar 

  44. S. Apte, K. Mahesh, T. Lundgren, Accounting for finite-size effects in simulations of disperse particle-laden flows, International Journal of Multiphase Flow 34 (3) (2008) 260–271.

    Article  Google Scholar 

  45. S. Apte, K. Mahesh, P. Moin, Large-eddy simulation of evaporating spray in a coaxial combustor, Proceedings of the Combustion Institute 32 (2) (2009) 2247–2256.

    Article  Google Scholar 

  46. S. V. Apte, B. Helenbrook, P. Moin, Modeling effects of droplet deformation and breakup in realistic combustors, in: Proceedings of the 16th conference of liquid atomization and spray systems, Monterey, 2003.

    Google Scholar 

  47. Center for Integrated Turbulence Simulations, (2003–2005), Annual Report, http://www.stanford.edu/group/cits/pubs/reports.html.

  48. H. Pitsch, L. Duchamp de Lageneste, Large-eddy simulation of premixed turbulent combustion using a level-set approach, Proceedings of the Combustion Institute 29 (2) (2002) 2001–2008.

    Article  Google Scholar 

  49. C. Wall, C. Pierce, P. Moin, A semi-implicit method for resolution of acoustic waves in low Mach number flows, Journal of Computational Physics 181 (2) (2002) 545–563.

    Article  MATH  MathSciNet  Google Scholar 

  50. F. Ham, An effcient scheme for large eddy simulation of low-Ma combustion in complex configurations, Annual research briefs, center for turbulence research, Stanford University, 2007.

    Google Scholar 

  51. G. Iaccarino, F. Ham, LES on Cartesian grids with anisotropic Refinement, Lecture Notes in Computational Science and Engineering 56 (2007) 219.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Support for this work was provided by the US Department of Energy under the Advanced Scientific Computing (ASC) program. The computer resources at San Diego Supercomputing Center are greatly appreciated. We are indebted to Profs. Parviz Moin, Krishnan Mahesh, Gianluca Iaccarino, Brian Helenbrook, Heinz Pitsch, Drs. Frank Ham and Joeseph Oefelein, and the combustor group at Pratt & Whitney for their help and support at various stages of this work. We also thank Mr. Daniel Peterson for editing this document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Apte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer US

About this chapter

Cite this chapter

Apte, S.V., Moin, P. (2011). Spray Modeling and Predictive Simulations in Realistic Gas-Turbine Engines. In: Ashgriz, N. (eds) Handbook of Atomization and Sprays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7264-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7264-4_35

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7263-7

  • Online ISBN: 978-1-4419-7264-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics