Advertisement

Swirl, T-Jet and Vibrating-Mesh Atomizers

  • M. EslamianEmail author
  • N. AshgrizEmail author
Chapter

Abstract

This chapter discusses several other types of atomizers that were not considered in the previous chapters. This includes “swirl nozzles, T-jet nozzles, and vibrating mesh nebulizers.” The droplet size correlations for different types of nozzles is provided in Chap. 24.

Keywords

Swirl nozzles T-jet nozzle Vibration mesh nebulizers 

References

  1. 1.
    A. H. Lefebvre, Atomization and sprays, Taylor & Francis, New York, 1989.Google Scholar
  2. 2.
    L. Bayvel, Z. Orzechowski, Liquid atomization, Taylor & Francis, Philadelphia, 1993.Google Scholar
  3. 3.
    J.-H. Rhim, S.-Y. No, Breakup length of conical emulsion sheet discharged by pressure-swirl atomizer, Int. J. Automot. Technol. 2(3), 103–107 (2001).Google Scholar
  4. 4.
    G. I. Taylor, The mechanics of a swirl atomizers, in: Proceedings of the Seventh International Congress for Applied Mechanics 2(1), 280 (1948).Google Scholar
  5. 5.
    G. I. Taylor, The boundary layer in the converging nozzle of swirl atomizer, Quart. J. Mech. Appl. Math. 3, 129 (1950).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    A. M. Binnie, D. P. Harris, The application of boundary layer theory to swirling flow through a nozzle, Quart. J. Mech. Appl. Math. 3, 89 (1950).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    E. Giffen, B. S. Massey, Some observations on flow in spray nozzles, Motor Industry Res. Assoc. Report No. 1948/4, (1950).Google Scholar
  8. 8.
    R. W. Tate, W. R. Marshall, Atomization by centrifugal nozzles, J. Chem. Eng. Prog. 49, 169 (1953).Google Scholar
  9. 9.
    A. M. Binnie, Viscosity effects in the nozzle of a swirl atomizer, Quart. J. Mech. Appl. Math. 8, 394 (1955).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. M. Binnie, J. D. Teare, Experiments in the flow of a swirling water through a pressure nozzle and an open trumpet, Proc. R. Soc. London A 235, 78 (1956).CrossRefGoogle Scholar
  11. 11.
    A. M. Binnie, G. A. Hakings, M. Y. M. Kamel, The flow of swirling water through a convergent–divergent nozzle, J. Fluid Mech. 3, 261 (1957).CrossRefGoogle Scholar
  12. 12.
    S. P. Kutty, M. Narasimhan, K. Narayanaswamy, Design and prediction of discharge rate, cone angle and air core diameter of swirl chamber atomizers, in: Proceedings of the First International Conference on Liquid Atomization and Spray Systems, Tokyo, p. 93 (1978).Google Scholar
  13. 13.
    S. K. Som, S. G. Mukherjee, Theoretical and experimental investigations on the formation of air core in a swirl spray atomizing nozzle, Appl. Sci. Res. 36, 173 (1980).CrossRefGoogle Scholar
  14. 14.
    A. R. Jones, Design optimization of a large pressure jet atomizer for power plant, in: Proceedings of the Second International Conference on Liquid Atomization and Spray Systems, p. 181 (1982).Google Scholar
  15. 15.
    N. K. Rizk, A. H. Lefebvre, Internal flow characteristics of simplex swirl atomizers, AIAA J. Propuls. Power 1(3), 193–199 (1985a).CrossRefGoogle Scholar
  16. 16.
    N. K. Rizk, A. H. Lefebvre, Prediction of velocity coefficient and spray cone angle for simplex swirl atomizers, in: Proceedings of the Third International Conference on Liquid Atomization and Spray Systems, London, p. 111c/2/1 (1985b).Google Scholar
  17. 17.
    M. Suyari, A. H. Lefebvre, Film thickness measurements in simplex swirl atomizer, AIAA J. Propuls. Power 2(6), 528–533 (1986).CrossRefGoogle Scholar
  18. 18.
    X. F. Wang, A. H. Lefebvre, Influence of ambient pressure on pressure swirl atomization, Atomization Spray Tech. 3, 209 (1987).Google Scholar
  19. 19.
    S. K. Chen, A. H. Lefebvre, J. Rollbuhler, Factors influencing the effective spray cone angle of pressure swirl atomizers, ASME J. Eng. Gas Turbine Power 114, 97 (1992).CrossRefGoogle Scholar
  20. 20.
    S. M. Jeng, M. A. Jog, M. A. Benjamin, Computational and experimental study of liquid sheet emanating from simplex fuel nozzle, AIAA J. 36 (2), 201 (1998).CrossRefGoogle Scholar
  21. 21.
    Y. Liao, A. T. Sakman, S. M. Jeng, M. A. Jog, M. A. Benjamin, A comprehensive model to predict simplex atomizer performance, ASME J. Eng. Gas Turbine Power 121, 285 (1999).CrossRefGoogle Scholar
  22. 22.
    A.T. Sakman, M. A. Jog, S. M. Jeng, M. A. Benjamin, Parametric study of simplex fuel nozzle internal flow and performance, AIAA J. 38(7), 1214 (2000).CrossRefGoogle Scholar
  23. 23.
    A. Datta, S. K. Som, Numerical prediction of air core diameter, coefficient of discharge and spray cone angle of a swirl spray pressure nozzle, Int. J. Heat Fluid Flow 21, 412 (2000).CrossRefGoogle Scholar
  24. 24.
    M. R. Halder, S. K. Dash, S. K. Som, Initiation of air core in a simplex nozzle and the effects of operating and geometrical parameters on its shape and size, Exp. Thermal  Fluid Sci. 26, 871–878 (2002).CrossRefGoogle Scholar
  25. 25.
    R. J. Kenny, J. R. Hulka, M. D. Moser, O. N. Rhys, Effect of Chamber Backpressure on Swirl Injector Fluid Mechanics, J. Propuls. Power 25(4), (2009).Google Scholar
  26. 26.
    V. Bazarov, V. Yang, P. Puri, Design and dynamics of jet and swirl injectors, Liquid Rocket Thrust Chambers: Aspects of Modeling, Analysis, and Design, edited by V. Yang, M. Habiballah, J. Hulka, and M. Poppe, Vol. 200, Progress in Astronautics and Aeronautics, AIAA, Reston, pp. 19–103 (2004).Google Scholar
  27. 27.
    M. Doumas, R. Laster, Liquid-film properties in centrifugal spray nozzles, Chem. Eng. Prog. 49(9), 518–526 (1953).Google Scholar
  28. 28.
    S. K. Dash, M. R. Halder, M. Peric, S. K. Som, Formation of air core in nozzles with tangential entry, J. Fluids Eng. 123(4), 829–835 (2001).CrossRefGoogle Scholar
  29. 29.
    D. Donjat, J. Estivalezes, M. Michau, G. Lavergne, Phenomenological study of the pressure swirl atomizer internal flow, Proceedings of the 9th International Conference on Liquid Atomization and Spray Systems, Sorrento, Italy, pp. 12–19 (2003).Google Scholar
  30. 30.
    S. M. DeCorso, G. A. Kemeny, Effect of ambient and fuel pressure on nozzle spray angle, American Society of Mechanical Engineers Paper No. 1956-GTP-3, April 1956.Google Scholar
  31. 31.
    J. Ortman, A. H. Lefebvre, Internal fuel distributions from pressure-swirl atomizers, J. Propuls. Power, 1(1), 11–15 (1985).CrossRefGoogle Scholar
  32. 32.
    K. S. Park, S. D. Heister, Nonlinear modeling of drop size distributions produced by pressure-swirl atomizers, Int. J. Multiphase Flow 36, 1–12 (2010).CrossRefGoogle Scholar
  33. 33.
    H. Park, S. D. Heister, Nonlinear simulation of free surfaces and atomization in pressure swirl atomizers, Phys. Fluids 18, 52103 (2006).CrossRefGoogle Scholar
  34. 34.
    A. Mandal, M. A. Jog, J. Xue, A. A. Ibrahim, Flow of power-law fluids in simplex atomizers, Int. J. Heat Fluid Flow 29, 1494–1503 (2008).CrossRefGoogle Scholar
  35. 35.
    J. Xue, M. A. Jog, S. M. Jeng, E. Steinthorsson, M. A. Benjamin, Effect of geometric parameters on simplex atomizer performance AIAA J. 42(12), 2408–2415 (2004).CrossRefGoogle Scholar
  36. 36.
    S. Nonnenmacher, M. Piesche, Design of hollow cone pressure swirl nozzles to atomize Newtonian fluids, Chem. Eng. Sci. 55, 4339–4348 (2000).CrossRefGoogle Scholar
  37. 37.
    S. Moon, E. Abo-Serie, C. Bae, Liquid film thickness inside the high pressure swirl injectors: Real scale measurement and evaluation of analytical equations, Exp. Thermal Fluid Sci. 34, 113–121 (2010a).CrossRefGoogle Scholar
  38. 38.
    M. P. Fard, N. Ashgriz, J. Mostaghimi, L. A. Prociw, T. C. J. Hu, Modeling liquid film formation and breakup in an industrial spray nozzle, ILASS America, 15th Annual Conference on Liquid Atomization and Spray Systems, May 14–17, 2002, Madison, Wisconsin.Google Scholar
  39. 39.
    W. M. Ren, J. F. Nally Jr., Computations of hollow-cone sprays from a pressure-swirl injector, SAE Technical Paper 982610, Society of Automotive Engineers, Warrendale, 1998.CrossRefGoogle Scholar
  40. 40.
    N. Dombrowski, P. C. Hooper, The Effect of ambient density on drop formation in sprays, Chem. Eng. Sci. 17, 291–305 (1962).CrossRefGoogle Scholar
  41. 41.
    Z. Han, L. Fan, and R. D. Reitz, Multidimensional modeling of spray atomization and air-fuel mixing in a direct-injection spark-ignition engine, SAE Technical Paper 970884, Society of Automotive Engineers, Warrendale, 1997.Google Scholar
  42. 42.
    Z. Han, Z. Xu, S. T. Wooldridge, J. Yi, and G. Lavoie, Modeling of DISI engine sprays with comparison to experimental in-cylinder spray images, SAE Technical Paper 2001-01-3667, Society of Automotive Engineers, Warrendale, 2001.CrossRefGoogle Scholar
  43. 43.
    J. Cousin, H. Nuglisch, Modeling of internal flows in high pressure swirl injectors, SAE Technical Paper 2001-01-0963, Society of Automotive Engineers, Warrendale, 2001.CrossRefGoogle Scholar
  44. 44.
    T. Inamura, H. Tamura, H. Sakamoto, Characteristics of liquid film and spray injected from swirl coaxial injector, J. Propuls. Power 19(4), 632–639 (2003).CrossRefGoogle Scholar
  45. 45.
    D. P. Schmidt, I. Nouar, P. K. Senecal, C. J. Rutland, J. K. Martin, R. D. Reitz, J. A. Hoffman, Pressure-Swirl Atomization in the Near Field, SAE Technical Paper 1999-01-0496, Society of Automotive Engineers, Warrendale, 1999.CrossRefGoogle Scholar
  46. 46.
    P. K. Senecal, D. P. Schmidt, I. Nouar, C. J. Rutland, R. D. Reitz, M. L. Corradini, Modeling high-speed viscous sheet atomization, Int. J. Multiphase Flow 25, 1073–1097 (1999).zbMATHCrossRefGoogle Scholar
  47. 47.
    J. J. Chinn, An appraisal of swirl atomizer inviscid flow analysis, Part 1: The principle of maximum flow for a swirl atomizer and its use in the exposition and comparison of early flow analyses, Atomization Sprays 19(3), 263–282, (2009a).CrossRefGoogle Scholar
  48. 48.
    J. J. Chinn, An appraisal of swirl atomizer inviscid flow analysis, Part 2: Inviscid spray cone angle analyses and comparison of inviscid methods with experimental results for discharge coefficient, air core radius and spray cone angle, Atomization Sprays, 19(3), 283–308 (2009b).CrossRefGoogle Scholar
  49. 49.
    K. Ranganadha Babu, M. V. Narasimhan, K. Narayanaswamy, Prediction of mean droplet size of fuel sprays from swirl spray atomizers. Proc. ICLASS-82, Madison, Wisconsin, 3–4, 99–106 (1982).Google Scholar
  50. 50.
    M. M. Elkotb, N. M. Rafat, M. A. Hanna, The influence of swirl atomizer geometry on the atomization performance. Proc. ICLASS-78, Tokyo, 5–1, 109–115 (1978).Google Scholar
  51. 51.
    N. Dombrowski, D. Hasson, The flow characteristics of swirl (centrifugal) spray pressure nozzles with low viscosity liquids, AlChE J. 15(4), 604–611 (2004).Google Scholar
  52. 52.
    A. Radcliffe, The performance of a type of swirl atomizer, Proc. Inst. Mech. Engrs 169, 93 (1955).CrossRefGoogle Scholar
  53. 53.
    J. C. Cooke, On Pohlhausen’s method with application to swirl problem of Taylor, J. Aeronaut. Sci., 19(7), 486–490 (1952).zbMATHMathSciNetGoogle Scholar
  54. 54.
    I. Novikov, Atomization of liquids by centrifugal nozzles, Engineers’ Digest (British Edition), 10(3), 72–74 (1949).Google Scholar
  55. 55.
    P. W. Loustalan, M. H. Davy, P. A. Williams: Experimental investigation into the liquid sheet break-up of high-pressure DISI swirl atomizers, SAE paper 2003-10-27Google Scholar
  56. 56.
    I-P. Chung, C. Presser, Fluid property effects on sheet disintegration of a simplex pressure-swirl atomizer, J. Propuls. Power 17(1), 212–216 (2001).CrossRefGoogle Scholar
  57. 57.
    S. Boyaval, C. Dumouchel, Investigation on the drop size distribution of sprays produced by a high-pressure swirl injector: Measurements and application of the maximum entropy formalism Part. Part. Syst. Charact. 18, 33–49 (2001).CrossRefGoogle Scholar
  58. 58.
    P. W. Loustalan, M. H. Davy, Preliminary analysis of the near nozzle break-up from a pressure-swirl atomizer using a void fraction technique, presented at 5th International Congress on Direkteinspritzung im Ottomotor (Gasoline Direct Injection Engines), Essen, Germany, 1–2 July, 2003.Google Scholar
  59. 59.
    P. W. Loustalan, M. H. Davy, P. A. Williams, Experimental investigation into the liquid sheet break-up of high-pressure DISI swirl atomizers, SAE 2003 Transactions, vol. 112, section 4, J. Fuels Lubricants ISBN 0-7680-1451-4, pp. 2124–2134 (2004).Google Scholar
  60. 60.
    J. Galpin, J. Cousin G. Corbinelli, S. Siveri, A one dimensional model for designing pressure swirl atomizers, SAE Technical Paper 2005-01-2101, Society of Automotive Engineers, Warrendale, 2005.CrossRefGoogle Scholar
  61. 61.
    S. Kim, D. Kim, D. Y. Yoon: Liquid film thickness measurement for swirl injector, J. Korean Soc. Propuls. Eng. 10, 70–77 (in Korean) (2006).Google Scholar
  62. 62.
    A. Mansour, N. Chigier, Disintegration of liquid sheets, Phys. Fluids A, 2(5), 706–719 (1990).CrossRefGoogle Scholar
  63. 63.
    D. Cooper and A. J. Yule, Waves on the air core/liquid interface of a pressure swirl atomizer, Proc. ILASS-Europe, Zurich, Switzerland (2001).Google Scholar
  64. 64.
    J.J. Chinn, The analogy between waves on the surface of an aircore of a swirl atomizer and long, shallow water gravity waves, Proc. ICLASS-Europe, Sorrento, Italy, 2003.Google Scholar
  65. 65.
    N. Dombrowski, R. P. Fraser, A photographic investigation into the disintegration of liquid sheets, Phil. Trans. Roy. Soc. London A, 247(924), 101–130 (1954).CrossRefGoogle Scholar
  66. 66.
    R. P. Fraser, P. Eisenklam, N. Dombrowski, and D. Hasson, Drop Formation from Rapidly Moving Liquid Sheets, AIChE J. 8(5), 672–680 (1962).CrossRefGoogle Scholar
  67. 67.
    G. Taylor, The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets, Proc. Roy. Soc. London A 253(1274), 313–321 (1959).CrossRefGoogle Scholar
  68. 68.
    M. Badami, V. Bevilacqua, F. Millo, M. Chiodi, M. Bargende, GDI swirl injector spray simulation: Combined phenomenological-CFD approach, SAE Paper 2004-01-3005 (2004).Google Scholar
  69. 69.
    S. Moon, E. Abo-Serie, C. Bae, Liquid film thickness inside the high pressure swirl injectors: Real scale measurement and evaluation of analytical equations, Exp. Thermal Fluid Sci. 34, 113–121 (2010b).CrossRefGoogle Scholar
  70. 70.
    Y. Khavkin, The theory and practice of swirl atomizers, CRC Press, London (2003).Google Scholar
  71. 71.
    T. Ghazanfari, A. M. A. Elhissi, Z. Ding, K. M. G. Taylor, The influence of fluid physicochemical properties on vibrating-mesh nebulization, Int. J. Pharm. 339, 103–111 (2007).CrossRefGoogle Scholar
  72. 73.
    R. Dhand, Nebulizers that use a vibrating mesh or plate with multiple apertures to generate aerosol, Respir. Care 47, 406–416 (2002).Google Scholar
  73. 72.
    M. Eslamian, N. Ashgriz, Effect of atomization method on the morphology of spray generated particles, J. Eng. Mater. Technol. 129(1), 130–142 (2007).CrossRefGoogle Scholar
  74. 74.
    K. C. Kesser, D. E. Geller, New aerosol delivery devices for cystic fibrosis, Respir. Care 54(6), 754–768 (2009).CrossRefGoogle Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations