• F. Sultan
  • N. AshgrizEmail author
  • D. R. Guildenbecher
  • P. E. Sojka


This chapter provides an introduction to electrosprays (ES). Electrosprays, also known as Electrohydrodynamic (EHD) sprays, are sprays created from the atomization of a bulk liquid due to electrostatic charging. The fundamental physics involved in such sprays is first introduced followed by results of experimental and theoretical characterization. Practical applications are briefly discussed with special attention paid to the use of electrospray in mass spectrometry where it is used as an ion source.


Aerodynamic effects Charged droplets Cone jet Droplet evaporation Droplet deformation Electrohydrodynamic spray Electrospray Ion source Mass spectrometry Mass spectroscopy Rayleigh charge limit Spray modes Taylor cone 


  1. 1.
    Castellanos, A. (1998). Electrohydrodynamics. New York: Springer Wien.zbMATHGoogle Scholar
  2. 2.
    Tang, Kaberle, P., & Liang. (1993). From ions in solution to ions in the gas phase – the mechanism of electrospray mass spectrometry. Analytical Chemistry, Vol. 65 (22), 972A–986A.CrossRefGoogle Scholar
  3. 3.
    Bailey, A. G. (1988). Electrostatic Spraying of Liquids. New York: John Wiley & Sons Limited.Google Scholar
  4. 4.
    Zeleny, J. (1914). Electrical discharge from liquid points. The Physical Review, Vol. 3 (2), 69–91.CrossRefGoogle Scholar
  5. 5.
    Tatiana, C., & Rohner, N. L. (2004). Electrochemical and theoretical aspects of electrospray ionisation. Physical Chemistry Chemical Physics, Vol. 6, 3056–3068.Google Scholar
  6. 6.
    Kebarle, P. (2000). A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. Journal of Mass Spectrometry, Vol. 35, 804–817.CrossRefGoogle Scholar
  7. 7.
    Taylor, S. G. (1964). Disintegration of water drops in an electric field. Proceedings of the Royal Society of London. Series A, Mathematical and Physical (Vol. 280 (1382), July 28, 1964, pp. 383–397). London: The Royal Society.zbMATHCrossRefGoogle Scholar
  8. 8.
    Smith, D. P. (1986). The electrohydrodynamic atomization of liquids. IEEE Transactions on Industry Applications, Vol. IA-22 (3), 527.CrossRefGoogle Scholar
  9. 9.
    Ikonomou, G. M., Blades, A. T., & Kebarle, P. (1991). Electrospray-ion spray: a comparison of mechanisms and performance. Analytical Chemistry, Vol. 63 (18), 1989–1998.CrossRefGoogle Scholar
  10. 10.
    Mora, J. F., & Loscertales, I. G. (1994). The current emitted by highly conducing Taylor cones. Journal of Fluid Mechanics, Vol. 260, 155–184.CrossRefGoogle Scholar
  11. 11.
    Tang, K. (1994, November). The electrospray: fundamentals and feasibility of its application to targeted drug delivery by inhalation. A dissertation presented to the faculty of the graduate school of Yale university in candidacy for the degree of Doctor of Philosophy.Google Scholar
  12. 12.
    Zhang, X. (1999). Dynamics of growth and breakup of viscous pendant drops into air. Journal of Colloid and Interface Science, Vol. 212, 107–122.CrossRefGoogle Scholar
  13. 13.
    Marginean, I. (2006, August). From chaotic cone pulsation to ion evaporation in electrosprays. Dissertation submitted to the George Washington University.Google Scholar
  14. 14.
    Tang, Gomez, A., & Keqi. (1994). Charge and fission of droplets in electrosprays. Physics of Fluids, Vol. 6, 404.CrossRefGoogle Scholar
  15. 15.
    Chiarot, P. R. (2008). Characterization of an electrified fluid interface and the electrospray mechanism: development of microscale analytical techniques. PhD thesis submitted to the University of Toronto, Toronto, Ontario, Canada.Google Scholar
  16. 16.
    Loeb, L., Kip, A., Hudson, G. G., & Bennet, W. H. (1941). Pulses in negative point-to-plane corona. Physical Review, Vol. 60, 714.CrossRefGoogle Scholar
  17. 17.
    Prunet-Foch, Cloupeau, M., & Bernard. (1994). Electrohydrodynamic spraying functioning modes. Journal of Aerosol Science, Vol. 25 (6), 1021–1036. Figures reprinted with permission from Elsevier.CrossRefGoogle Scholar
  18. 18.
    Marijnissen, J. M. (1994). A review of liquid atomization by electrical means. Journal of Aerosol Science, Vo. 25 (6), 1005–1019.CrossRefGoogle Scholar
  19. 19.
    Vonnegut, B., & Neubauer, R. L. (1952). Production of monodisperse liquid particles by electrical atomization. Journal of Colloid Science, Vol. 7, 616–622.CrossRefGoogle Scholar
  20. 20.
    Cloupeau, M., & Prunet-Foch, B. (1989). Electrostatic spraying of liquids in cone-jet mode. Journal of Electrostatics, Vol. 22, 135–159.CrossRefGoogle Scholar
  21. 21.
    Krohn, V. E. (1973). Evidence that the minimum-energy state is not accessible to a system of droplets produced by electrohydrodynamic spraying. Applied Physics Letters, Vol. 23 (5), 220.CrossRefGoogle Scholar
  22. 22.
    Rossel-Llompart, J. F. (1994). Generation of monodisperse droplets 0.3 to 4mm in diameter from electrified cone-jets of highly conducting and viscous liquids. Journal of Aerosol Science, Vol. 25 (6), 1093–1119.CrossRefGoogle Scholar
  23. 23.
    Kozhenkov, V. I., & Fuks, N. A. (1976). Electrohydrodynamic atomization of liquids. Russian Chemical Reviews, 45 (12), 1179.CrossRefGoogle Scholar
  24. 24.
    Schneider, N. R. (1965). Production of uniform-sized liquid drops. Journal of Scientific Instruments, Vol. 42, 635.CrossRefGoogle Scholar
  25. 25.
    Rayleigh, J. W. (1879). On the conditions of instability of electrified drops, with applications to the electric discharge from liquid points. Proceedings of the Royal Society, Vol. 29, 71–83.CrossRefGoogle Scholar
  26. 26.
    Desnoyers, J. E., & Joliceur, C. (1969). In J. C. Bockris, Modern Aspects of Electrochemistry (Vol. 5, p. 20). New York: Plenum Press.Google Scholar
  27. 27.
    Shaw, D. T. (1978). Fundamentals of Aerosol Science. New York: John Wiley & Sons.Google Scholar
  28. 28.
    Rayleigh, L. (1882). On the equilibrium of liquid conducting masses charged with electricity. Philosophical Magazine, Vol. 14, 184.Google Scholar
  29. 29.
    Cole, R. B. (1997). Electrospray Ionization Mass Spectrometry – Fundamentals, Instrumentation and Applications. New York: John Wiley & Sons.Google Scholar
  30. 30.
    Lefebvre, A. H. (1989). Atomization and Sprays. New York: Hemisphere Publishing Corp.Google Scholar
  31. 31.
    Dole, M., Mack, L. L., & Hines, R. L. (1968). Molecular beams of macroions. Journal of Chemical Physics, Vol. 49 (5), 2240.CrossRefGoogle Scholar
  32. 32.
    Iribarne, B. A., & V., T. a. (1979). Field induced ion evaporation from liquid surfaces at atmospheric pressure. Journal of Chemical Physics, Vol. 71 (11), 4451.CrossRefGoogle Scholar
  33. 33.
    Kelly AJ (1984). The electrostatic atomization of hydrocarbons. Journal of the Institute of Energy Vol. 57, 312–320.Google Scholar
  34. 34.
    Shrimpton, J. S., & Yule, A. J. (2001). Atomization, combustion, and control of charged hydrocarbon sprays. Atomization and Sprays, Vol. 11, 365–396.Google Scholar
  35. 35.
    Gassend, B. L. P. (2007). A fully micro fabricated two-dimensional electrospray array with applications to space propulsion, PhD submitted to Massachusetts Institute of Technology.Google Scholar
  36. 36.
    Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., & Whitehouse, C. M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science, Vol. 246 (4926), 64–71.CrossRefGoogle Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  • F. Sultan
  • N. Ashgriz
    • 1
    Email author
  • D. R. Guildenbecher
  • P. E. Sojka
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations