Instability of Liquid Sheets

  • N. Ashgriz
  • X. Li
  • A. Sarchami
Chapter

Abstract

This chapter relates to the liquid sheets and their instability. Liquid sheet instability is due to the interaction between the liquid and its surrounding fluid. When the amplitude of a perturbation grows and reaches a critical value, sheet is disintegrated forming liquid ligaments. Here, the linear and nonlinear instability of an inviscid and viscous liquid sheet is discussed, showing the effect of the aerodynamic forces on the growth rate of the initially small perturbations. Other effects, such as the effect of initial velocity profile on the instability are also discussed.

Keywords

Liquid sheet instability Nonlinear sheet instability Sinuous and dilational disturbances of a liquid sheet Thinning liquid sheet Three dimensional instability of liquid sheets Viscous sheets 

References

  1. 1.
    Savart F, Mémoire sar le choc de deux veine liquides, animées de mouvements directement oppose’s, Ann. Chim. Phys. 55, 257, 1833.Google Scholar
  2. 2.
    Michell JH, On the theory of free stream lines, Phil. Trans. A 181, 389–431, 1890.CrossRefGoogle Scholar
  3. 3.
    Squire H.B, Investigation of the instability of a moving liquid film, Brit. J. Appl. Phys. 4, 167–169, 1953.CrossRefGoogle Scholar
  4. 4.
    Hagerty WW, Shea JF, A study of the stability of plane fluid sheets, J. Appl. Mech. 22, 509–514, 1955.Google Scholar
  5. 5.
    Taylor GI, Oblique impact of a jet on a plane surface, Philos. Trans. R. Soc. Lond. Ser. A 260, 96–100, 1966.CrossRefGoogle Scholar
  6. 6.
    Taylor GI, Waves on fluid sheets, Pro. Roy. Soc. A, 253, 296–312, 1959a.CrossRefGoogle Scholar
  7. 7.
    Taylor GI, Disintegration of fluid sheets, Pro. Roy. Soc. A, 253, 313–321, 1959b.CrossRefGoogle Scholar
  8. 8.
    Dombrowski N, Fraser RP, A photographic investigation into the disintegration of liquid sheets, Phil. Trans. 247(924), 101–130, 1954.CrossRefGoogle Scholar
  9. 9.
    Dombrowski N, Hasson D, Ward DE, Some aspects of liquid flow through fan spray nozzles, Chem. Eng. Sci. 12, 35–50, 1960.CrossRefGoogle Scholar
  10. 10.
    Dombrowski N, Hooper PC, The effect of ambient density on drop formation in sprays, Chem. Eng. Sci. 17, 291–305, 1962.CrossRefGoogle Scholar
  11. 11.
    Fraser RP, Eisenklam P, Dombrowski N, Hasson D, Drop formation from rapidly moving sheets, AIChE J 8(5), 672–680, 1962.CrossRefGoogle Scholar
  12. 12.
    Dombrowski N, Johns WR, The aerodynamic instability and disintegration of viscous liquid sheets, Chem, Eng. Sci. 18, 203–214, 1963.Google Scholar
  13. 13.
    Clark CJ, Dombrowski N, Aerodynamic instability and disintegration of inviscid liquid sheets, Proc. Roy. Soc. A 329, 467–478, 1972.MATHCrossRefGoogle Scholar
  14. 14.
    Crapper GD, Dombrowski N, Jepson WP, Pyott GAD, A note on the growth of Kelvin–Helmholtz waves on thin liquid sheets, J. Fluid Mech. 57(4), 671–672, 1973.CrossRefGoogle Scholar
  15. 15.
    Crapper GD, Dombrowski N, Pyott GAD, Large amplitude Kelvin–Helmholtz waves on thin liquid sheets, Proc. R. Soc. London Ser. A Math. Phys. Sci. 342(1629), 209–224, 1975.CrossRefGoogle Scholar
  16. 16.
    Crapper GD, Dombrowski N, A note on the effect of forced disturbances on the stability of thin liquid sheets and on the resulting drop size, Int. J. Multiphase Flow 10(6), 731–736, 1984.CrossRefGoogle Scholar
  17. 17.
    Weihs D, Stability of thin radially moving liquid sheets, J. Fluid Mech. 87(2), 289–298, 1978.MATHCrossRefGoogle Scholar
  18. 18.
    Huang JCP, The breakup of axisymmetric liquid sheets, J. Fluid Mech. 43, 305–319, 1970.CrossRefGoogle Scholar
  19. 19.
    Ibrahim EA, Akpan ET, Three-dimensional instability of viscous liquid sheets, Atom. Sprays 6, 649–665, 1996.Google Scholar
  20. 20.
    Senecal PK, Schmidt DP, Nouar I, Ruthland CJ, Reitz RD, Corradini ML, Modeling high-speed viscous liquid sheet atomization, Int. J. Multiphase Flows, 25,1073–1097, 1999.MATHCrossRefGoogle Scholar
  21. 21.
    Rangel RH, Sirignano WA, The linear and nonlinear shear instability of a fluid sheet, Phys. Fluids A 3(10), 2392–2400, 1999.CrossRefGoogle Scholar
  22. 22.
    Sirignano WA, Mehring C, Review of theory of distortion and disintegration of liquid streams, Prog. Energy Combus. Sci. 26, 609–655, 2000.CrossRefGoogle Scholar
  23. 23.
    Mehring C, Sirignano WA, Nonlinear capillary wave distortion and disintegration of thin planar liquid sheets, J. Fluid Mech. 388, 69–113, 1999.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lin SP, Breakup of liquid sheets and jets, Cambridge Publishing, 2003, ISBN: 0521806941.Google Scholar
  25. 25.
    Levitch, VG, Physiochemical Hydrodynamics, Prentice-Hall, 1962.Google Scholar
  26. 26.
    Weber CZ, The break-up of liquid jets, Zeit schrift fur Angewandte Mathematik und Mechanik, 11, 136–154, 1931.Google Scholar
  27. 27.
    Grant RP, Middleman S, Newtonian jet stability, AIChE J. 12(4), 669–678, 1966.CrossRefGoogle Scholar
  28. 28.
    Kroesser FW, Middleman S, Viscoelastic jet stability, AIChE J. 15(3), 383, 1969.CrossRefGoogle Scholar
  29. 29.
    Sarchami A, Ashgriz N, Tran HN, An atomization model for splash plate nozzles, AICHE J. 56(4), 849–857, 2009.Google Scholar
  30. 30.
    Lin SP, Wang ZL, Three types of linear theories for atomizing liquids, Atom. Sprays 18, 273–286, 2008.CrossRefGoogle Scholar
  31. 31.
    Gaster M, Growth of disturbances in both space and time, J. Fluid Mech. 11, 723–727, 1968.Google Scholar
  32. 32.
    Lin SP, Stability of a viscous liquid curtain, J. Fluid Mech. 104, 111–118, 1981.MATHCrossRefGoogle Scholar
  33. 33.
    Altimira M, Riras A, Ramos JC, Anton R, Linear spatial instability of viscous flow of a liquid sheet through gas, Physics of Fluids 22, 1–11, 2010.Google Scholar
  34. 34.
    Ramos JI, Planar liquid sheet at low reynolds number, Int. J. Numerical methods, Fluids 22, 961, 1996.MATHCrossRefGoogle Scholar
  35. 35.
    Ramos JI, Asymptotic analysis and stability of inviscid liquid sheets, J. Math. Anal. Appl. 250, 512, 2000.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    de Luca L, Costa M, Instability of spatially developing liquid sheet, J. Fluid Mech. 339, 353–376, 1997.Google Scholar
  37. 37.
    de Luca, Experimental investigation of the global instability of plane flows, J. Fluid Mech. 399, 355–376, 1999.MATHCrossRefGoogle Scholar
  38. 38.
    Hauke G, Dopazo C, Lozano A, Barreras F, Hernandez A, Linear stability analysis of a viscous liquid sheet in a High-spped viscous gas, J. flow, Turbulence and Combastion 67, 235–265, 2001.Google Scholar
  39. 39.
    Barreras F, Experimental study of the Break-up and atomization of a liquid sheet, phD Dissertation, University of Zaragoza, 1998.Google Scholar
  40. 40.
    Teng CH, Lin SP, Chen JN, Absolute and convective instability of a viscous liquid curtain in a viscous gas, J. Fluid Mech. 332, 105, 1997.MATHGoogle Scholar
  41. 41.
    Jazayeri S, Li X, Nonlinear instability of plane liquid sheets, J. Fluid Mech. 406, 281–308, 2000.MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Movassat M, Maftoon N, Dolatabadi A, A three-dimensional numerical study of the breakup length of liquid sheets, Proceedings of 21th Annual Conference on Liquid Atomization and Spray Systems, Orlando, FL, May 2008.Google Scholar
  43. 43.
    Raessi M, Pitsch H, A level-set based methodology for modeling interfacial flows characterized with large density ratios, ILASS-Americas 22nd Annual Conference on Liquid Atomization and Spray Systems, Cincinnati, OH, May 2010.Google Scholar
  44. 44.
    Lozano A, Garcı&a-Olivares A, Dopazo C, The instability growth leading to a liquid sheet breakup, Phys. Fluids 10(9), 2188–2197, 1998.Google Scholar
  45. 45.
    Kim I, Sirignano WA, Three-dimensional wave distortion and disintegration of thin planar liquid sheets, J. Fluid Mech. 410, 147–183, 2000.MATHCrossRefGoogle Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  • N. Ashgriz
  • X. Li
  • A. Sarchami
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations