Skip to main content

Plain Orifice Spray Nozzles

  • Chapter
  • First Online:
Handbook of Atomization and Sprays
  • 8194 Accesses

Abstract

Plain orifice, or “pressure atomizers” are the most commonly used atomizers due primarily to their simplicity and ease of manufacture. This chapter provides background on the characteristics of these devices in terms of spray production and general behavior. Classical linear theories are reviewed to provide a basis for theoretical droplet size predictions. More recent developments assessing the unsteadiness within these devices, and its role in spray production, is also provided in subsequent discussion. The chapter closes with modern nonlinear simulations of spray production using modern numerical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Lefebvre, Atomization and Sprays, Hemisphere Publishing, New York, 1989.

    Google Scholar 

  2. A. Lichtarowicz, R. K. Duggins, and E. Markland, Discharge coefficients for incompressible non-cavitating flow through long orifices, Journal of mechanical Engineering Science, 7(2), 210–219, 1965.

    Article  Google Scholar 

  3. T. R. Ohrn, Senser, D. W., and Lefebvre, A. H., Geometrical effects on discharge coefficients for plain orifice atomizers, Atomization and Sprays, 1(2), 137–157, 1991.

    Google Scholar 

  4. V.I. Asihmin, Geller, Z. I., and Skobel’cyn, Yu. A., Discharge of a real fluid from cylindrical orifices (in Russian), Oil Industry, Vol. 9, Moscow, 1961.

    Google Scholar 

  5. W. S. Rayleigh, On the instability of jets, Proc. Lond. Math. Soc., 10(4), 1878.

    Google Scholar 

  6. C. Weber, Zum Zerfall Eines Flussigkeitsstrahles, Z. Angew. Math. Mech., 11, 138–245, 1931.

    Google Scholar 

  7. N. N. Mansour and T. T. Lundgren, Satellite formation in capillary jet breakup, Phys. Fluids, 2, 1141–1144, 1990.

    Article  Google Scholar 

  8. J. H. Hilbing, S. D. Heister, and C. A. Spangler, A boundary element method for atomization of a finite liquid jet, Atomization Sprays, 5(6), 621–638, 1995.

    Google Scholar 

  9. C. A. Spangler, J. H. Hilbing, and S. D. Heister, Nonlinear modeling of jet atomization in the wind-induced regime, Phys. Fluids, 7, 964, 1995.

    Article  MATH  Google Scholar 

  10. M. P. Moses, Collicott, S. H., and Heister, S. D., Visualization of liquid jet breakup and drop formation, Atomization Sprays, 9(4), 331–342, 1999.

    Google Scholar 

  11. J. H. Hilbing and Heister, S. D., Droplet size control in liquid jet breakup, Phys. Fluids, 8(6), 1574–1581, 1996.

    Article  MATH  Google Scholar 

  12. V. G. Levich, Physicochemical Hydrodynamics, Prentice Hall, New Jersey, pp. 639–646, 1962.

    Google Scholar 

  13. A. M. Sterling and C. A. Sleicher, The instability of capillary jets, J. Fluid Mech., 68(3), 477–495, 1975.

    Article  MATH  Google Scholar 

  14. R. D. Reitz and F. V. Bracco, Mechanism of atomization of a liquid jet, Phys. Fluids, 25(10), 1730–1742, 1982.

    Article  MATH  Google Scholar 

  15. S. P. Lin, Two types of linear theories for atomizing liquids, Atomization Sprays, 16, 147–158, 2006.

    Article  Google Scholar 

  16. S. P. Lin and Z.W. Wang, Three types of linear theories for atomizing liquids, Atomization Sprays, 18, 273–286, 2007.

    Google Scholar 

  17. J. W. Hoyt and J. J. Taylor, Waves on water jets, J. Fluid Mech., 83, 119–127, 1977.

    Article  Google Scholar 

  18. J. W. Hoyt and J. J. Taylor, Turbulence structure in a water jet discharging in the air, Phys. Fluids, 20(10), s253–s257, 1977.

    Article  Google Scholar 

  19. J. W. Hoyt and J. J. Taylor, Effect of nozzle boundary layer on water jets discharging in the air, Jets Cavities-Int. Symp., pp. 93–100, 1985.

    Google Scholar 

  20. M. J. McCarthy and N. A. Molloy, Review of stability of liquid jets and the influence of nozzle design, Chem. Eng. J., 7, 1–20, 1974.

    Google Scholar 

  21. V. Y. Shkadov, Wave formation on surface of viscous liquid due to tangential stress, Fluid Dyn., 5, 473–476, 1970.

    Article  Google Scholar 

  22. C. Brennen, Cavity surface wave patterns and general appearance, J. Fluid Mech., 44(1), 33–49, 1970.

    Article  Google Scholar 

  23. H. Park and S. D. Heister, A numerical study of primary instability on viscous high-speed jets, Comput. Fluids, 35, 1033–1045, 2006.

    Article  MATH  Google Scholar 

  24. G. A. Blaisdell, Collicott, S. H., and Portillo J. E., Measurements of instability waves in a high-speed liquid jet, 61st Conference of the American Physical Society, Division of Fluid Dynamics, San Antonio TX, 2008.

    Google Scholar 

  25. S. S. Yoon and S. D. Heister, Categorizing linear theories for atomizing jets, Atomization Sprays, 13, 499–516, 2003.

    Article  Google Scholar 

  26. J. H. Hilbing and S. D. Heister, Nonlinear simulation of a high-speed, viscous, liquid jet, Atomization Sprays, 8, 155–178, 1997.

    Google Scholar 

  27. S. S. Yoon, and S. D. Heister, A nonlinear atomization model based on a boundary layer instability mechanism, Phys. Fluids, 16(1), 47–61, 2004.

    Article  MathSciNet  Google Scholar 

  28. P. K. Wu and G. M. Faeth. Aerodynamic effects on primary breakup of turbulent liquids, Atomization Sprays, 3, 265–289, 1993.

    Google Scholar 

  29. P. K. Wu, L. K. Tseng, and G. M. Faeth. Primary breakup in gas/liquid mixing layers for turbulent liquids. Atomization Sprays, 2, 295–317, 1992.

    Google Scholar 

  30. Ph. Marmottant and E. Villermaux, On spray formation, J. Fluid Mech., 498, 73–111, 2004.

    Article  MATH  Google Scholar 

  31. C. Xu, R. A. Bunnell, and S. D. Heister, On the influence of internal flow structure on performance of plain-orifice atomizers, Atomization Sprays, 11, 335–350, 2001.

    MATH  Google Scholar 

  32. M. MacDonald, J. Canino, and S. Heister, Nonlinear response functions for drilled orifice injectors, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006. AIAA-2006-4706.

    Google Scholar 

  33. J. Canino and Heister, S. D., Contributions of orifice hydrodynamic instabilities to primary atomization, Atomization Sprays, V19, 91–102, 2009.

    Article  Google Scholar 

  34. J. Ponstein. Instability of rotating cylindrical jets, Appl. Sci. Res., 8(6), 425–456, 1959.

    Article  MATH  MathSciNet  Google Scholar 

  35. J. Tsohas, J. Canino, and S. Heister, Computational modeling of rocket internal flows, 43nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2007. AIAA-2007-5571.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Heister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer US

About this chapter

Cite this chapter

Heister, S.D. (2011). Plain Orifice Spray Nozzles. In: Ashgriz, N. (eds) Handbook of Atomization and Sprays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7264-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7264-4_27

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7263-7

  • Online ISBN: 978-1-4419-7264-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics