Plain Orifice Spray Nozzles

  • S. D. HeisterEmail author


Plain orifice, or “pressure atomizers” are the most commonly used atomizers due primarily to their simplicity and ease of manufacture. This chapter provides background on the characteristics of these devices in terms of spray production and general behavior. Classical linear theories are reviewed to provide a basis for theoretical droplet size predictions. More recent developments assessing the unsteadiness within these devices, and its role in spray production, is also provided in subsequent discussion. The chapter closes with modern nonlinear simulations of spray production using modern numerical techniques.


Boundary element method Cavitation Discharge coefficient Hydrodynamic instability Jet instability Liquid jet Pressure atomizer Satellite droplets 


  1. 1.
    A. Lefebvre, Atomization and Sprays, Hemisphere Publishing, New York, 1989.Google Scholar
  2. 2.
    A. Lichtarowicz, R. K. Duggins, and E. Markland, Discharge coefficients for incompressible non-cavitating flow through long orifices, Journal of mechanical Engineering Science, 7(2), 210–219, 1965.CrossRefGoogle Scholar
  3. 3.
    T. R. Ohrn, Senser, D. W., and Lefebvre, A. H., Geometrical effects on discharge coefficients for plain orifice atomizers, Atomization and Sprays, 1(2), 137–157, 1991.Google Scholar
  4. 4.
    V.I. Asihmin, Geller, Z. I., and Skobel’cyn, Yu. A., Discharge of a real fluid from cylindrical orifices (in Russian), Oil Industry, Vol. 9, Moscow, 1961.Google Scholar
  5. 5.
    W. S. Rayleigh, On the instability of jets, Proc. Lond. Math. Soc., 10(4), 1878.Google Scholar
  6. 6.
    C. Weber, Zum Zerfall Eines Flussigkeitsstrahles, Z. Angew. Math. Mech., 11, 138–245, 1931.Google Scholar
  7. 7.
    N. N. Mansour and T. T. Lundgren, Satellite formation in capillary jet breakup, Phys. Fluids, 2, 1141–1144, 1990.CrossRefGoogle Scholar
  8. 8.
    J. H. Hilbing, S. D. Heister, and C. A. Spangler, A boundary element method for atomization of a finite liquid jet, Atomization Sprays, 5(6), 621–638, 1995.Google Scholar
  9. 9.
    C. A. Spangler, J. H. Hilbing, and S. D. Heister, Nonlinear modeling of jet atomization in the wind-induced regime, Phys. Fluids, 7, 964, 1995.zbMATHCrossRefGoogle Scholar
  10. 10.
    M. P. Moses, Collicott, S. H., and Heister, S. D., Visualization of liquid jet breakup and drop formation, Atomization Sprays, 9(4), 331–342, 1999.Google Scholar
  11. 11.
    J. H. Hilbing and Heister, S. D., Droplet size control in liquid jet breakup, Phys. Fluids, 8(6), 1574–1581, 1996.zbMATHCrossRefGoogle Scholar
  12. 12.
    V. G. Levich, Physicochemical Hydrodynamics, Prentice Hall, New Jersey, pp. 639–646, 1962.Google Scholar
  13. 13.
    A. M. Sterling and C. A. Sleicher, The instability of capillary jets, J. Fluid Mech., 68(3), 477–495, 1975.zbMATHCrossRefGoogle Scholar
  14. 14.
    R. D. Reitz and F. V. Bracco, Mechanism of atomization of a liquid jet, Phys. Fluids, 25(10), 1730–1742, 1982.zbMATHCrossRefGoogle Scholar
  15. 15.
    S. P. Lin, Two types of linear theories for atomizing liquids, Atomization Sprays, 16, 147–158, 2006.CrossRefGoogle Scholar
  16. 16.
    S. P. Lin and Z.W. Wang, Three types of linear theories for atomizing liquids, Atomization Sprays, 18, 273–286, 2007.Google Scholar
  17. 17.
    J. W. Hoyt and J. J. Taylor, Waves on water jets, J. Fluid Mech., 83, 119–127, 1977.CrossRefGoogle Scholar
  18. 18.
    J. W. Hoyt and J. J. Taylor, Turbulence structure in a water jet discharging in the air, Phys. Fluids, 20(10), s253–s257, 1977.CrossRefGoogle Scholar
  19. 19.
    J. W. Hoyt and J. J. Taylor, Effect of nozzle boundary layer on water jets discharging in the air, Jets Cavities-Int. Symp., pp. 93–100, 1985.Google Scholar
  20. 20.
    M. J. McCarthy and N. A. Molloy, Review of stability of liquid jets and the influence of nozzle design, Chem. Eng. J., 7, 1–20, 1974.Google Scholar
  21. 21.
    V. Y. Shkadov, Wave formation on surface of viscous liquid due to tangential stress, Fluid Dyn., 5, 473–476, 1970.CrossRefGoogle Scholar
  22. 22.
    C. Brennen, Cavity surface wave patterns and general appearance, J. Fluid Mech., 44(1), 33–49, 1970.CrossRefGoogle Scholar
  23. 23.
    H. Park and S. D. Heister, A numerical study of primary instability on viscous high-speed jets, Comput. Fluids, 35, 1033–1045, 2006.zbMATHCrossRefGoogle Scholar
  24. 24.
    G. A. Blaisdell, Collicott, S. H., and Portillo J. E., Measurements of instability waves in a high-speed liquid jet, 61st Conference of the American Physical Society, Division of Fluid Dynamics, San Antonio TX, 2008.Google Scholar
  25. 25.
    S. S. Yoon and S. D. Heister, Categorizing linear theories for atomizing jets, Atomization Sprays, 13, 499–516, 2003.CrossRefGoogle Scholar
  26. 26.
    J. H. Hilbing and S. D. Heister, Nonlinear simulation of a high-speed, viscous, liquid jet, Atomization Sprays, 8, 155–178, 1997.Google Scholar
  27. 27.
    S. S. Yoon, and S. D. Heister, A nonlinear atomization model based on a boundary layer instability mechanism, Phys. Fluids, 16(1), 47–61, 2004.MathSciNetCrossRefGoogle Scholar
  28. 28.
    P. K. Wu and G. M. Faeth. Aerodynamic effects on primary breakup of turbulent liquids, Atomization Sprays, 3, 265–289, 1993.Google Scholar
  29. 29.
    P. K. Wu, L. K. Tseng, and G. M. Faeth. Primary breakup in gas/liquid mixing layers for turbulent liquids. Atomization Sprays, 2, 295–317, 1992.Google Scholar
  30. 30.
    Ph. Marmottant and E. Villermaux, On spray formation, J. Fluid Mech., 498, 73–111, 2004.zbMATHCrossRefGoogle Scholar
  31. 31.
    C. Xu, R. A. Bunnell, and S. D. Heister, On the influence of internal flow structure on performance of plain-orifice atomizers, Atomization Sprays, 11, 335–350, 2001.zbMATHGoogle Scholar
  32. 32.
    M. MacDonald, J. Canino, and S. Heister, Nonlinear response functions for drilled orifice injectors, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006. AIAA-2006-4706.Google Scholar
  33. 33.
    J. Canino and Heister, S. D., Contributions of orifice hydrodynamic instabilities to primary atomization, Atomization Sprays, V19, 91–102, 2009.CrossRefGoogle Scholar
  34. 34.
    J. Ponstein. Instability of rotating cylindrical jets, Appl. Sci. Res., 8(6), 425–456, 1959.zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    J. Tsohas, J. Canino, and S. Heister, Computational modeling of rocket internal flows, 43nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2007. AIAA-2007-5571.Google Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.School of Aeronautics and AstronauticsPurdue UniversityWest LafayetteUSA

Personalised recommendations