Skip to main content

Droplet Stream Generator

  • Chapter
  • First Online:
Handbook of Atomization and Sprays

Abstract

The working principle and the functioning of droplet stream generators are discussed. The essential feature of these generators is that the size of the droplets produced can be accurately controlled. This makes the generators important tools for setting initial or boundary conditions of the droplets in transport processes. Droplet sizes may range between 10 µm and the order of millimeters. Droplet streams and sprays produced with this technique may be very accurately monodispersed. Devices suitable for producing such droplet streams and sprays are presented and discussed. Ranges of the relevant operation parameters and spray properties are specified. Electric charging of the droplets allows the droplet trajectories to be controlled. Fields of application of the droplet stream generators, ranging from packaging to rapid prototyping and space applications, are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. W. S. Lord Rayleigh: On the instability of jets, Proc. Lond. Math. Soc.10, 4–13 (1878).

    Article  Google Scholar 

  2. J. W. S. Lord Rayleigh: On the capillary phenomena of jets, Proc. R. Soc. Lond. 29, 71–97 (1879).

    Article  Google Scholar 

  3. J. W. S. Lord Rayleigh: On the instability of a cylinder of viscous liquid under capillary forces, Philos Mag. 34, 145–154 (1892).

    Google Scholar 

  4. C. Weber: Zum Zerfall eines Flüssigkeitsstrahles (On the break-up of a liquid jet), Zeitschr. Angew. Math. Mech. (J. Appl. Math. Mech.) 11, 136–154 (1931).

    MATH  Google Scholar 

  5. A. Haenlein: Über den Zerfall eines Flüssigkeitsstrahles (On the break-up of a liquid jet), Forsch. Geb. Ing.-Wesens (Res. Eng. Sci.) 2, 139–149 (1931).

    Article  Google Scholar 

  6. S. Tomotika: On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid, Proc. R. Soc. Lond. A 150, 322–337 (1935).

    Article  MATH  Google Scholar 

  7. P. Walzel: Koaleszenz von Flüssigkeitsstrahlen an Brausen (Coalescence of liquid jets at shower-head atomizers), Chem.-Ing.-Tech. 52, 652–654 (1980).

    Article  Google Scholar 

  8. W. v. Ohnesorge: Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen (The formation of drops at nozzles and the break-up of liquid jets), Zeitschr. Angew. Math. Mech. (J. Appl. Math. Mech.) ZAMM 16, 355–358 (1936).

    Article  Google Scholar 

  9. J. M. Schneider, C. D. Hendricks: Source of uniform-sized liquid droplets, Rev. Sci. Instrum. 35, 1349–1350 (1964).

    Article  Google Scholar 

  10. G. Brenn: On the controlled production of sprays with discrete polydisperse drop size spectra, Chem. Eng. Sci. 55, 5437–5444 (2000).

    Article  Google Scholar 

  11. G. Brenn: Die gesteuerte Sprayerzeugung für industrielle Anwendungen (Controlled spray production for industrial applications), Habilitation thesis, Friedrich-Alexander University of Erlangen-Nürnberg, Department of Chemical Engineering, 193 pp (1999).

    Google Scholar 

  12. K. Anders, N. Roth, A. Frohn: Operation characteristics of vibrating-orifice generators: the coherence length, Part. Part. Syst. Charact. 9, 40–43 (1992).

    Article  Google Scholar 

  13. F. Savart: Mémoire sur la constitution des veines liquides lancées par des orifices circulaires en mince paroi, Ann. Chim. Phys. 53. 337–386 (1833).

    Google Scholar 

  14. N. A. Dimmock: Production of uniform droplets, Nature 166, 686–687 (1950).

    Article  Google Scholar 

  15. N. R. Lindblad, J. M. Schneider: Production of uniform-sized liquid droplets, J. Sci. Instrum. 42, 635–638 (1965).

    Article  Google Scholar 

  16. N. R. Lindblad, J. M. Schneider: Method of producing and measuring charged single droplets, Rev. Sci. Instrum. 38, 325–327 (1967).

    Article  Google Scholar 

  17. J. M. Schneider, N. R. Lindblad, C. D. Hendricks: An apparatus to study the collision and coalescence of liquid aerosols, J. Coll. Sci. 20, 610–616 (1965).

    Article  Google Scholar 

  18. R. N. Berglund, B. Y. H. Liu: Generation of monodisperse aerosol standards, Environ. Sci. Technol. 7, 147–153 (1973).

    Article  Google Scholar 

  19. A. Frohn, N. Roth: Dynamics of droplets, Springer, Berlin, 65–80 (2000).

    MATH  Google Scholar 

  20. P. W. Yim, J.-H. Chun, T. Ando, V. K. Sikka: Production and characterization of mono-sized Sn-Pb alloy balls, Int. J. Powder Metall. 32, 155–164 (1996).

    Google Scholar 

  21. E. K. Dabora: Production of monodisperse sprays, Rev. Sci. Instrum. 38, 502–506 (1967).

    Article  Google Scholar 

  22. G. Brenn, T. Helpiö, F. Durst: A new apparatus for the production of monodisperse sprays at high flow rates, Chem. Eng. Sci. 52, 237–244 (1997).

    Article  Google Scholar 

  23. P. Naefe, H. Ringel, E. Zimmer: Erzeugung gleichförmiger Tropfen aus Flüssigkeitsstrahlen (Uniform droplet formation from liquid jets), Chem.-Ing.-Tech. 50, 321 (1978).

    Article  Google Scholar 

  24. U. Weierstall, R. B. Doak, J. C. H. Spence, D. Starodub, D. Shapiro, P. Kennedy, J. Warner, G. G. Hembree, P. Fromme, H. N. Chapman: Droplet streams for serial crystallography of proteins, Exp. Fluids 44, 675–689 (2008).

    Article  Google Scholar 

  25. F. Schmelz, S. Schneider, P. Walzel: Production of monosized droplets in pneumatic extension nozzles, Proceedings of the 16th Annual Conference on Liquid Atomization and Spray Systems (ILASS Europe), Darmstadt, paper II.2 (2000).

    Google Scholar 

  26. P. Walzel, F. Schmelz, S. Schneider: Herstellen monodisperser Tropfen mit pneumatischen Ziehdüsen (production of monodisperse droplets with pneumatic extension nozzles), Chem. Ing. Tech. 73, 1599–1602 (2001).

    Article  Google Scholar 

  27. A. M. Gañán-Calvo: Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams, Phys. Rev. Lett. 80, 285–288 (1998).

    Article  Google Scholar 

  28. L. Martín-Banderas, M. Flores-Mosquera, P. Riesco-Chueca, A. Rodríguez-Gil, Á. Cebolla, S. Chávez, A. M. Gañán-Calvo: Flow focusing: a versatile technology to produce size-controlled and specific morphology microparticles, Small 1, 688–692 (2005).

    Article  Google Scholar 

  29. L. Martín-Banderas, A. Rodríguez-Gil, Á. Cebolla, S. Chávez, T. Berdún-Álvarez, J. M. Fernandez Garcia, M. Flores-Mosquera, A. M. Gañán-Calvo: Towards high-throughput production of uniformly encoded microparticles, Adv. Mater. 18, 559–564 (2006).

    Article  Google Scholar 

  30. M. Cloupeau, B. Prunet-Foch: Electrostatic spraying of liquids in cone-jet mode, J. Electrostat. 22, 135–159 (1989).

    Article  Google Scholar 

  31. M. Cloupeau, B. Prunet-Foch: Electrostatic spraying of liquids: main functioning mode, J. Electrostat. 25, 165–184 (1990).

    Article  Google Scholar 

  32. M. Cloupeau, B. Prunet-Foch: Electrohydrodynamic spraying functioning modes: a critical review, J. Aerosol Sci. 22, 1021–1036 (1994).

    Article  Google Scholar 

  33. M. Orme, E. P. Muntz: New technique for producing highly uniform droplet streams over an extended range of disturbance wavenumbers, Rev. Sci. Instrum. 58, 279–284 (1987).

    Article  Google Scholar 

  34. M. Orme, E. P. Muntz: The manipulation of capillary stream breakup using amplitude-modulated disturbances: a pictorial and quantitative representation, Phys. Fluids A2, 1124–1140 (1990).

    Google Scholar 

  35. M. Orme: On the genesis of droplet stream microspeed dispersions, Phys. Fluids A3, 2936–2947 (1991).

    Google Scholar 

  36. M. Orme: A novel technique of rapid solidification net-form materials synthesis, J. Mater. Eng. Perform. 2, 399–405 (1993).

    Article  Google Scholar 

  37. M. Orme, K. Willis, T.-V. Nguyen: Droplet patterns from capillary stream breakup, Phys. Fluids A5, 80–90 (1993).

    Google Scholar 

  38. J. H. Hilbing, S. D. Heister: Droplet size control in liquid jet breakup, Phys. Fluids 8, 1574–1581 (1996).

    Article  MATH  Google Scholar 

  39. G. Brenn, U. Lackermeier: Drop formation from a vibrating orifice generator driven by modulated electrical signals, Phys. Fluids 9, 3658–3669 (1997).

    Article  Google Scholar 

  40. F. Takahashi, W. J. Schmoll, J. L. Dressler: Characterization of a velocity-modulation atomizer, Rev. Sci. Instrum. 65, 3563–3569 (1994).

    Article  Google Scholar 

  41. G. Brenn, F. Durst, C. Tropea: Monodisperse sprays for various purposes – their production and characteristics, Part. Part. Syst. Charact. 13, 179–185 (1996).

    Article  Google Scholar 

  42. A. Atten, S. Oliveri: Charging of drops formed by circular jet breakup, J. Electrostatics 29, 73–91 (1992).

    Article  Google Scholar 

  43. R. W. Park, E. J. Crosby: A device for producing controlled collisions between pairs of drops, Chem. Eng. Sci. 20, 39–45 (1965).

    Article  Google Scholar 

  44. P. Schümmer, K. H. Tebel: Production of monodispersed drops by forced disturbance of a free jet, Ger. Chem. Eng. 5, 209–220 (1982).

    Google Scholar 

  45. H. Ulmke, T. Wriedt, K. Bauckhage: Piezoelectric droplet generator for the calibration of particle-sizing instruments, Chem. Eng. Technol. 24, 265–268 (2001).

    Article  Google Scholar 

  46. P. Walzel: Zertropfen von Flüssigkeiten mittels Druckschwingungen, Chem.-Ing.-Tech. 51, 525 (1979).

    Article  Google Scholar 

  47. K.-J. Choi, B. Delcorio: Generation of controllable monodispersed sprays using impulse jet and charging techniques, Rev. Sci. Instrum. 61, 1689–1693 (1990).

    Article  Google Scholar 

  48. H. Huynh, F. Mashayek, N. Ashgriz: Satellite size control in liquid jets using modulated amplitude disturbances, Proceedings of the Seventh Annual Conference on Liquid Atomization and Spray Systems (ILASS Americas), Bellevue, pp. 60–64 (1994).

    Google Scholar 

  49. M. Asano, N. Nagai, A. Kawasaki, R. Watanabe: Optimization of process parameters for preparing honodisperse (sic!) particles by pulsated orifice injection method, J. Jpn. Soc. Powder Powder Metall. 43, 1273–1278 (1996) (in Japanese).

    Google Scholar 

  50. K. Ichiki, M. Asano, A. Kawasaki, R. Watanabe, M. Miyajima: Preparation of monodisperse spherical particles of Bi-Sb system for thermoelectric microdevices, J. Jpn. Soc. Powder Powder Metall. 44, 700–705 (1997) (in Japanese).

    Google Scholar 

  51. A. Kawasaki, R. Watanabe, Y. Kuroki: Preparation of monosized spherical powders of Pb-Sn alloy by pulsated orifice injection method, Proceedings of the Powder Metallurgy World Congress, Paris, vol. 1, pp. 365–368 (1994).

    Google Scholar 

  52. M. Orme, C. Huang: Phase change manipulation for droplet-based solid freeform fabrication, Trans. ASME – J. Heat Transf. 119, 1–6 (1997).

    Google Scholar 

  53. M. Orme, Q. Liu, R. Smith: Molten aluminum micro-droplet formation and deposition for advanced manufacturing applications, Alumin. Trans. 3, 95–103 (2000a).

    Google Scholar 

  54. M. Orme, R. F. Smith: Enhanced aluminum properties by means of precise droplet deposition, Trans. ASME – J. Manuf. Sci. Eng. 122, 484–493 (2000).

    Article  Google Scholar 

  55. M. Orme, C. Huang, J. Courter: Precision droplet-based manufacturing and material synthesis: fluid dynamics and thermal control issues, Atomization Sprays 6, 305–329 (1996).

    Google Scholar 

  56. M. Orme, J. Courter, Q. Liu, J. Zhu, R. Smith: Charged molten metal droplet deposition as a direct write technology, Mater. Res. Soc. Symp. Proc. 624, 17–22 (2000b).

    Google Scholar 

  57. B. M. Michaelis, D. Dunn-Rankin, R. F. Smith Jr., J. E. Bobrow: In-flight thermal control of molten metal droplet streams, Int. J. Heat Mass Transf. 50, 4554–4558 (2007).

    Article  Google Scholar 

  58. K. Anders: Monodisperse droplet streams and their application in space, Proceedings of the Symposium on Fluid Dynamics and Space, VKI, Rhode-Saint-Genèse, pp. 119–125 (1986).

    Google Scholar 

  59. E. P. Muntz, M. Orme: Characteristics, control, and uses of liquid streams in space, AIAA J. 25, 746–756 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Brenn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer US

About this chapter

Cite this chapter

Brenn, G. (2011). Droplet Stream Generator. In: Ashgriz, N. (eds) Handbook of Atomization and Sprays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7264-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7264-4_26

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7263-7

  • Online ISBN: 978-1-4419-7264-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics