Advertisement

Droplet Stream Generator

  • G. BrennEmail author
Chapter

Abstract

The working principle and the functioning of droplet stream generators are discussed. The essential feature of these generators is that the size of the droplets produced can be accurately controlled. This makes the generators important tools for setting initial or boundary conditions of the droplets in transport processes. Droplet sizes may range between 10 µm and the order of millimeters. Droplet streams and sprays produced with this technique may be very accurately monodispersed. Devices suitable for producing such droplet streams and sprays are presented and discussed. Ranges of the relevant operation parameters and spray properties are specified. Electric charging of the droplets allows the droplet trajectories to be controlled. Fields of application of the droplet stream generators, ranging from packaging to rapid prototyping and space applications, are addressed.

Keywords

Discrete polydisperse spray Electric droplet charging Extension nozzle Ink-jet printing Monodisperse droplet stream Monodisperse spray Multihole orifice Modulated jet excitation Nozzle hole shapes Rapid prototyping Rayleigh-type jet break-up Solder ball production 

References

  1. 1.
    J. W. S. Lord Rayleigh: On the instability of jets, Proc. Lond. Math. Soc.10, 4–13 (1878).CrossRefGoogle Scholar
  2. 2.
    J. W. S. Lord Rayleigh: On the capillary phenomena of jets, Proc. R. Soc. Lond. 29, 71–97 (1879).CrossRefGoogle Scholar
  3. 3.
    J. W. S. Lord Rayleigh: On the instability of a cylinder of viscous liquid under capillary forces, Philos Mag. 34, 145–154 (1892).Google Scholar
  4. 4.
    C. Weber: Zum Zerfall eines Flüssigkeitsstrahles (On the break-up of a liquid jet), Zeitschr. Angew. Math. Mech. (J. Appl. Math. Mech.) 11, 136–154 (1931).zbMATHGoogle Scholar
  5. 5.
    A. Haenlein: Über den Zerfall eines Flüssigkeitsstrahles (On the break-up of a liquid jet), Forsch. Geb. Ing.-Wesens (Res. Eng. Sci.) 2, 139–149 (1931).CrossRefGoogle Scholar
  6. 6.
    S. Tomotika: On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid, Proc. R. Soc. Lond. A 150, 322–337 (1935).zbMATHCrossRefGoogle Scholar
  7. 7.
    P. Walzel: Koaleszenz von Flüssigkeitsstrahlen an Brausen (Coalescence of liquid jets at shower-head atomizers), Chem.-Ing.-Tech. 52, 652–654 (1980).CrossRefGoogle Scholar
  8. 8.
    W. v. Ohnesorge: Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen (The formation of drops at nozzles and the break-up of liquid jets), Zeitschr. Angew. Math. Mech. (J. Appl. Math. Mech.) ZAMM 16, 355–358 (1936).CrossRefGoogle Scholar
  9. 9.
    J. M. Schneider, C. D. Hendricks: Source of uniform-sized liquid droplets, Rev. Sci. Instrum. 35, 1349–1350 (1964).CrossRefGoogle Scholar
  10. 10.
    G. Brenn: On the controlled production of sprays with discrete polydisperse drop size spectra, Chem. Eng. Sci. 55, 5437–5444 (2000).CrossRefGoogle Scholar
  11. 11.
    G. Brenn: Die gesteuerte Sprayerzeugung für industrielle Anwendungen (Controlled spray production for industrial applications), Habilitation thesis, Friedrich-Alexander University of Erlangen-Nürnberg, Department of Chemical Engineering, 193 pp (1999).Google Scholar
  12. 12.
    K. Anders, N. Roth, A. Frohn: Operation characteristics of vibrating-orifice generators: the coherence length, Part. Part. Syst. Charact. 9, 40–43 (1992).CrossRefGoogle Scholar
  13. 13.
    F. Savart: Mémoire sur la constitution des veines liquides lancées par des orifices circulaires en mince paroi, Ann. Chim. Phys. 53. 337–386 (1833).Google Scholar
  14. 14.
    N. A. Dimmock: Production of uniform droplets, Nature 166, 686–687 (1950).CrossRefGoogle Scholar
  15. 15.
    N. R. Lindblad, J. M. Schneider: Production of uniform-sized liquid droplets, J. Sci. Instrum. 42, 635–638 (1965).CrossRefGoogle Scholar
  16. 16.
    N. R. Lindblad, J. M. Schneider: Method of producing and measuring charged single droplets, Rev. Sci. Instrum. 38, 325–327 (1967).CrossRefGoogle Scholar
  17. 17.
    J. M. Schneider, N. R. Lindblad, C. D. Hendricks: An apparatus to study the collision and coalescence of liquid aerosols, J. Coll. Sci. 20, 610–616 (1965).CrossRefGoogle Scholar
  18. 18.
    R. N. Berglund, B. Y. H. Liu: Generation of monodisperse aerosol standards, Environ. Sci. Technol. 7, 147–153 (1973).CrossRefGoogle Scholar
  19. 19.
    A. Frohn, N. Roth: Dynamics of droplets, Springer, Berlin, 65–80 (2000).zbMATHGoogle Scholar
  20. 20.
    P. W. Yim, J.-H. Chun, T. Ando, V. K. Sikka: Production and characterization of mono-sized Sn-Pb alloy balls, Int. J. Powder Metall. 32, 155–164 (1996).Google Scholar
  21. 21.
    E. K. Dabora: Production of monodisperse sprays, Rev. Sci. Instrum. 38, 502–506 (1967).CrossRefGoogle Scholar
  22. 22.
    G. Brenn, T. Helpiö, F. Durst: A new apparatus for the production of monodisperse sprays at high flow rates, Chem. Eng. Sci. 52, 237–244 (1997).CrossRefGoogle Scholar
  23. 23.
    P. Naefe, H. Ringel, E. Zimmer: Erzeugung gleichförmiger Tropfen aus Flüssigkeitsstrahlen (Uniform droplet formation from liquid jets), Chem.-Ing.-Tech. 50, 321 (1978).CrossRefGoogle Scholar
  24. 24.
    U. Weierstall, R. B. Doak, J. C. H. Spence, D. Starodub, D. Shapiro, P. Kennedy, J. Warner, G. G. Hembree, P. Fromme, H. N. Chapman: Droplet streams for serial crystallography of proteins, Exp. Fluids 44, 675–689 (2008).CrossRefGoogle Scholar
  25. 25.
    F. Schmelz, S. Schneider, P. Walzel: Production of monosized droplets in pneumatic extension nozzles, Proceedings of the 16th Annual Conference on Liquid Atomization and Spray Systems (ILASS Europe), Darmstadt, paper II.2 (2000).Google Scholar
  26. 26.
    P. Walzel, F. Schmelz, S. Schneider: Herstellen monodisperser Tropfen mit pneumatischen Ziehdüsen (production of monodisperse droplets with pneumatic extension nozzles), Chem. Ing. Tech. 73, 1599–1602 (2001).CrossRefGoogle Scholar
  27. 27.
    A. M. Gañán-Calvo: Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams, Phys. Rev. Lett. 80, 285–288 (1998).CrossRefGoogle Scholar
  28. 28.
    L. Martín-Banderas, M. Flores-Mosquera, P. Riesco-Chueca, A. Rodríguez-Gil, Á. Cebolla, S. Chávez, A. M. Gañán-Calvo: Flow focusing: a versatile technology to produce size-controlled and specific morphology microparticles, Small 1, 688–692 (2005).CrossRefGoogle Scholar
  29. 29.
    L. Martín-Banderas, A. Rodríguez-Gil, Á. Cebolla, S. Chávez, T. Berdún-Álvarez, J. M. Fernandez Garcia, M. Flores-Mosquera, A. M. Gañán-Calvo: Towards high-throughput production of uniformly encoded microparticles, Adv. Mater. 18, 559–564 (2006).CrossRefGoogle Scholar
  30. 30.
    M. Cloupeau, B. Prunet-Foch: Electrostatic spraying of liquids in cone-jet mode, J. Electrostat. 22, 135–159 (1989).CrossRefGoogle Scholar
  31. 31.
    M. Cloupeau, B. Prunet-Foch: Electrostatic spraying of liquids: main functioning mode, J. Electrostat. 25, 165–184 (1990).CrossRefGoogle Scholar
  32. 32.
    M. Cloupeau, B. Prunet-Foch: Electrohydrodynamic spraying functioning modes: a critical review, J. Aerosol Sci. 22, 1021–1036 (1994).CrossRefGoogle Scholar
  33. 33.
    M. Orme, E. P. Muntz: New technique for producing highly uniform droplet streams over an extended range of disturbance wavenumbers, Rev. Sci. Instrum. 58, 279–284 (1987).CrossRefGoogle Scholar
  34. 34.
    M. Orme, E. P. Muntz: The manipulation of capillary stream breakup using amplitude-modulated disturbances: a pictorial and quantitative representation, Phys. Fluids A2, 1124–1140 (1990).Google Scholar
  35. 35.
    M. Orme: On the genesis of droplet stream microspeed dispersions, Phys. Fluids A3, 2936–2947 (1991).Google Scholar
  36. 36.
    M. Orme: A novel technique of rapid solidification net-form materials synthesis, J. Mater. Eng. Perform. 2, 399–405 (1993).CrossRefGoogle Scholar
  37. 37.
    M. Orme, K. Willis, T.-V. Nguyen: Droplet patterns from capillary stream breakup, Phys. Fluids A5, 80–90 (1993).Google Scholar
  38. 38.
    J. H. Hilbing, S. D. Heister: Droplet size control in liquid jet breakup, Phys. Fluids 8, 1574–1581 (1996).zbMATHCrossRefGoogle Scholar
  39. 39.
    G. Brenn, U. Lackermeier: Drop formation from a vibrating orifice generator driven by modulated electrical signals, Phys. Fluids 9, 3658–3669 (1997).CrossRefGoogle Scholar
  40. 40.
    F. Takahashi, W. J. Schmoll, J. L. Dressler: Characterization of a velocity-modulation atomizer, Rev. Sci. Instrum. 65, 3563–3569 (1994).CrossRefGoogle Scholar
  41. 41.
    G. Brenn, F. Durst, C. Tropea: Monodisperse sprays for various purposes – their production and characteristics, Part. Part. Syst. Charact. 13, 179–185 (1996).CrossRefGoogle Scholar
  42. 42.
    A. Atten, S. Oliveri: Charging of drops formed by circular jet breakup, J. Electrostatics 29, 73–91 (1992).CrossRefGoogle Scholar
  43. 43.
    R. W. Park, E. J. Crosby: A device for producing controlled collisions between pairs of drops, Chem. Eng. Sci. 20, 39–45 (1965).CrossRefGoogle Scholar
  44. 44.
    P. Schümmer, K. H. Tebel: Production of monodispersed drops by forced disturbance of a free jet, Ger. Chem. Eng. 5, 209–220 (1982).Google Scholar
  45. 45.
    H. Ulmke, T. Wriedt, K. Bauckhage: Piezoelectric droplet generator for the calibration of particle-sizing instruments, Chem. Eng. Technol. 24, 265–268 (2001).CrossRefGoogle Scholar
  46. 46.
    P. Walzel: Zertropfen von Flüssigkeiten mittels Druckschwingungen, Chem.-Ing.-Tech. 51, 525 (1979).CrossRefGoogle Scholar
  47. 47.
    K.-J. Choi, B. Delcorio: Generation of controllable monodispersed sprays using impulse jet and charging techniques, Rev. Sci. Instrum. 61, 1689–1693 (1990).CrossRefGoogle Scholar
  48. 48.
    H. Huynh, F. Mashayek, N. Ashgriz: Satellite size control in liquid jets using modulated amplitude disturbances, Proceedings of the Seventh Annual Conference on Liquid Atomization and Spray Systems (ILASS Americas), Bellevue, pp. 60–64 (1994).Google Scholar
  49. 49.
    M. Asano, N. Nagai, A. Kawasaki, R. Watanabe: Optimization of process parameters for preparing honodisperse (sic!) particles by pulsated orifice injection method, J. Jpn. Soc. Powder Powder Metall. 43, 1273–1278 (1996) (in Japanese).Google Scholar
  50. 50.
    K. Ichiki, M. Asano, A. Kawasaki, R. Watanabe, M. Miyajima: Preparation of monodisperse spherical particles of Bi-Sb system for thermoelectric microdevices, J. Jpn. Soc. Powder Powder Metall. 44, 700–705 (1997) (in Japanese).Google Scholar
  51. 51.
    A. Kawasaki, R. Watanabe, Y. Kuroki: Preparation of monosized spherical powders of Pb-Sn alloy by pulsated orifice injection method, Proceedings of the Powder Metallurgy World Congress, Paris, vol. 1, pp. 365–368 (1994).Google Scholar
  52. 52.
    M. Orme, C. Huang: Phase change manipulation for droplet-based solid freeform fabrication, Trans. ASME – J. Heat Transf. 119, 1–6 (1997).Google Scholar
  53. 53.
    M. Orme, Q. Liu, R. Smith: Molten aluminum micro-droplet formation and deposition for advanced manufacturing applications, Alumin. Trans. 3, 95–103 (2000a).Google Scholar
  54. 54.
    M. Orme, R. F. Smith: Enhanced aluminum properties by means of precise droplet deposition, Trans. ASME – J. Manuf. Sci. Eng. 122, 484–493 (2000).CrossRefGoogle Scholar
  55. 55.
    M. Orme, C. Huang, J. Courter: Precision droplet-based manufacturing and material synthesis: fluid dynamics and thermal control issues, Atomization Sprays 6, 305–329 (1996).Google Scholar
  56. 56.
    M. Orme, J. Courter, Q. Liu, J. Zhu, R. Smith: Charged molten metal droplet deposition as a direct write technology, Mater. Res. Soc. Symp. Proc. 624, 17–22 (2000b).Google Scholar
  57. 57.
    B. M. Michaelis, D. Dunn-Rankin, R. F. Smith Jr., J. E. Bobrow: In-flight thermal control of molten metal droplet streams, Int. J. Heat Mass Transf. 50, 4554–4558 (2007).CrossRefGoogle Scholar
  58. 58.
    K. Anders: Monodisperse droplet streams and their application in space, Proceedings of the Symposium on Fluid Dynamics and Space, VKI, Rhode-Saint-Genèse, pp. 119–125 (1986).Google Scholar
  59. 59.
    E. P. Muntz, M. Orme: Characteristics, control, and uses of liquid streams in space, AIAA J. 25, 746–756 (1987).CrossRefGoogle Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.Institute of Fluid Mechanics and Heat TransferGraz University of TechnologyGrazAustria

Personalised recommendations