Drop-on-Demand Drop Generators

  • M. EslamianEmail author
  • N. AshgrizEmail author


This chapter provides information on different types of drop-on-demand drop generators. It starts with thermal or bubble jets, in which a nucleation bubble is used to eject a droplet out of an orifice. This is followed by piezoelectric, pneumatic, microfluidic, electrohydrodynamics (EHD) and aerodynamic droplet generators. For each droplet generator, the principle of operation and major features and characteristics are described.


Droplet-on-demand (DOD) droplet generators Electrohydrodynamics (EHD) droplet generators Microfluidic droplet generators Piezoelectric droplet generators Pneumatic droplet generators Thermal or bubble jet droplet generators 


  1. 1.
    J.-T. Yeh: Simulation and industrial Applications of Inkjet, Presented at the Seventh National Computational Fluid Dynamics Conference, August 2000, Kenting (2000).Google Scholar
  2. 2.
    T. Goldmann and J. S. Gonzalez: DNA printing: utilization of a standard inkjet printer for the transfer of a nucleic acid to solid supports, Journal of Biochemical and Biophysical Methods, 42, 105–110 (2000).CrossRefGoogle Scholar
  3. 3.
    C. Maier, S. Wiesche, and E. P. Hofer: Impact of microdrops on solid surfaces for DNA-synthesis (2000), Available online at:
  4. 4.
    M. Grove, D. Hayes, R. Cox, and D. Wallace: Color flat panel manufacturing using inkjet technology, Display Works’99, San Jose (1999).Google Scholar
  5. 5.
    F. Tseng: A micro droplet injector system, Ph.D. thesis, University of California, Los Angeles (1998).Google Scholar
  6. 6.
    M. Blander and J. L. Katz: Bubble nucleation in liquids, AIChE Journal, 21(5), 833–848 (1975).CrossRefGoogle Scholar
  7. 7.
    R. R. Allen, J. D. Meyer, and W. R. Knight: Thermodynamics and hydrodynamics of thermal ink jets, Hewlett-Packard Journal, 36, 21–27 (1985).Google Scholar
  8. 8.
    A. Asai: Application of the nucleation theory to the design of bubble jet printers, Japanese Journal of Applied Physics, 28(5), 909–915 (1989).CrossRefGoogle Scholar
  9. 9.
    J. R. Andrews and M. P. O’Horo: Initial stages of vapor bubble nucleation in thermal inkjet processes, Proceedings of SPIE – The Internation Society for Optical Engineering, 2413, 182–188 (1995).Google Scholar
  10. 10.
    Y. Y. Hsu: On the size range of active nucleation cavities on the heating surface, Journal of Heat Transfer, 84, 207–216 (1962).Google Scholar
  11. 11.
    A. Asai, T. Hara, and I. Endo: One-dimensional model of bubble growth and liquid flow in bubble jet printers, Japanese Journal of Applied Physics, 26(10), 1794–1801 (1987).CrossRefGoogle Scholar
  12. 12.
    Asai: Bubble dynamics in boiling under high heat flux pulse heating, Journal of Heat Transfer, 113, 973–979 (1991).CrossRefGoogle Scholar
  13. 13.
    W. Runge: Nucleation in thermal ink-jet printers, IS&T’s Eighth International Congress on Advances in Non-Impacting Technologies, Springfield, 299–302 (1992).Google Scholar
  14. 14.
    C. T. Avedisian, W. S. Osbourne, F. D. McLeod, and C. M. Curley: Measuring bubble nucleation temperature on the surface of a rapidly heated thermal inkjet heater immersed in a pool of water, Proceedings of the Royal Society of London, Series A, 455, 3875–3899 (1999).CrossRefGoogle Scholar
  15. 15.
    P. Chen, W. Chen and S. H. Chang: Bubble growth and ink ejection process of a thermal ink jet print head, International Journal of Mechanical Sciences, 39 (6), 683–695 (1997).CrossRefMathSciNetGoogle Scholar
  16. 16.
    L. Lin, A. P. Pisano, and V. P. Carey: Thermal bubble formation on polysilicon micro resistor, Journal of Heat Transfer, 120, 735–742 (1998).CrossRefGoogle Scholar
  17. 17.
    Z. Zhao, S. Glod, D. Poulikakos: Pressure and power generation during explosive vaporization on a thin film microheater, International Journal of Heat and Mass Transfer, 43, 281–296 (2000).CrossRefGoogle Scholar
  18. 18.
    Y. Hong, N. Ashgriz, and J. Andrews: Experimental study of bubble dynamics on micro heaters induced by pulse heating, ASME Journal of Heat Transfer, 126(2), 259–271 (2004).CrossRefGoogle Scholar
  19. 19.
    Y. Hong, N. Ashgriz, J. Andrews and H. Parizi: Numerical simulation of growth and collapse of a bubble induced by a pulsed micro-heater, Journal of Microelectromechanical Systems, 13(5), 857–869 (2004).CrossRefGoogle Scholar
  20. 20.
    J. Krestschmer, C. Tille, and I. Ederer: A drop-on demand inkjet printhead for a wide range of applications, IS&Ts NIP 14: International Conference on Digital printing technologies, Seattle, pp. 343–347 (1997).Google Scholar
  21. 21.
    M. Döring: Ink-jet printing, Philips Technical Review, 40, 192–198 (1982).Google Scholar
  22. 22.
    H. P. Le: Progress and trends in ink-jet printing technology, Journal of Imaging Science and Technology, 42, 49–62 (1998).Google Scholar
  23. 23.
    R. G. Self and D. B. Wallace: Method of drop size modulation with extended transition time waveform, US Patent No. 6029896 (2000).Google Scholar
  24. 24.
    D. B. Bogy and P. E. Talke: Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices, IBM Journal of Research and Development, 28(3), 314–321 (1984).CrossRefGoogle Scholar
  25. 25.
    B. J. Gans, L. Xue, U. S. Agarwal, and U. S. Schubert: Ink-jet printing of linear and star polymers, Macromolecula Rapid Communications, 26, 310–314 (2005).CrossRefGoogle Scholar
  26. 26.
    A. S. Yang, J. C. Yang, and M. C. Hong: Droplet ejection study of a picojet printhead, Journal of Micromechanics and Microengineering, 16, 180–188 (2006).CrossRefGoogle Scholar
  27. 27.
    C. D. Meinhart and H. Zhang: The flow structure inside a microfabricated inkjet printhead, Journal Microelectromechanical Systems, 9(1), 67–75 (2000).CrossRefGoogle Scholar
  28. 28.
    R. Li, N. Ashgriz, and S. Chandra: Droplet generation from pulsed micro-jets, Journal of Experimental Thermal and Fluid Science, 32, 1679–1686 (2008a).CrossRefGoogle Scholar
  29. 29.
    R. Li, N. Ashgriz, S. Chandra, and J. R. Andrews: Contraction of free liquid ligaments, AIChE Journal, 54(12), 3084–3091 (2008b).CrossRefGoogle Scholar
  30. 30.
    X. Zhang and O. A Basaran: An experimental study of dynamics of drop formation, Physics of Fluids, 7, 1184–1203 (1995).CrossRefGoogle Scholar
  31. 31.
    D. M. Henderson, W. G. Pritchard, and L. B. Smolka: On the pinch-off of a pendant drop of viscous fluid, Physics of Fluids, 9(11), 3188–3200 (1997).CrossRefGoogle Scholar
  32. 32.
    X. D. Shi, M. P. Brenner, and S. R. Nagel: A cascade of structure in a drop falling from a faucet, Science, 265, 219–222 (1994).CrossRefMathSciNetGoogle Scholar
  33. 33.
    D. H. Peregrine, G. Shoker, and A. Symon: The bifurcation of liquid bridges, Journal of Fluid Mechanics, 212, 25–39 (1990).CrossRefMathSciNetGoogle Scholar
  34. 34.
    R. M. S. M. Schulkes: The contraction of liquid filaments, Journal of Fluid Mechanics, 309, 277–300 (1996).zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    P. Lafrance: Nonlinear breakup of a laminar liquid jet, Physics of Fluids, 18(4), 428–432 (1975).zbMATHCrossRefGoogle Scholar
  36. 36.
    K-C. Fan, J.-Y. Chen, C.-H. Wang, and W.-C Pan: Development of a drop-on-demand droplet generator for one-drop-fill technology, Sensors and Actuators A, 147, 649–655 (2008).CrossRefGoogle Scholar
  37. 37.
    H. Ulmke, T. Wriedt, and K. Bauckhage: Piezoelectric droplet generator for the calibration of particle-sizing instruments, Chemical Engineering and Technology, 24(3), 265–268 (2001).CrossRefGoogle Scholar
  38. 38.
    C. O. Pedersen: An experimental study of the dynamic behavior and heat transfer characteristics of water droplets impinging upon a heated surface, International Journal of Heat and Mass Transfer, 13(2), 369–381 (1970).CrossRefGoogle Scholar
  39. 39.
    J. R. Castrejón-Pita, G. D. Martin, S. D. Hoath, and I. M. Hutchings: A simple large-scale droplet generator for studies of inkjet printing, Review of Scientific Instruments, 79, 075108 (2008).CrossRefGoogle Scholar
  40. 40.
    S. Cheng and S. Chandra: A pneumatic droplet-on-demand generator, Experiments in Fluids, 34, 755–762 (2003).CrossRefGoogle Scholar
  41. 41.
    A. Amirzadeh Goghari and S. Chandra: Producing droplets smaller than the nozzle diameter by using a pneumatic drop-on-demand droplet generator, Experiments in Fluids, 44, 105–114 (2008).CrossRefGoogle Scholar
  42. 42.
    S.-Y. Teh, R. Lin, L.-H. Hungb and A. P. Lee: Droplet microfluidics, Lab Chip, 8, 198–220 (2008).CrossRefGoogle Scholar
  43. 43.
    M. Seo, C. Paquet, Z. Nie, S. Xu and E. Kumacheva: Microfluidic consecutive flow-focusing droplet generators, Soft Matter 3, 986–992 (2007).CrossRefGoogle Scholar
  44. 44.
    J. M. Crowley: Electrohydrodynamic droplet generators, Journal of Electrostatics, 14, 121–134 (1983).CrossRefGoogle Scholar
  45. 45.
    D. W. Hrdina and J. M. Crowley: Drop-on-demand operation of continuous jets using EHD techniques, IEEE Transactions on Industry Applications, 25(4), 705–710 (1989).CrossRefGoogle Scholar
  46. 46.
    R. Lane: A Microburette for producing small liquid drops of known size, Journal of Scientific Instruments, 24, 98–101 (1947).CrossRefGoogle Scholar
  47. 47.
    R. B. Peterson: Characterization of a simple, high Reynolds number droplet generator for combustion studies, Review of Scientific Instruments, 59(6), 960–966 (1988).CrossRefGoogle Scholar
  48. 48.
    G. J. Green, F. Takahashi, D. E. Walsh, and F. L. Dryer: Aerodynamic device for generating mono-disperse fuel droplets, Review of Scientific Instruments, 60(4), 646–652 (1989).CrossRefGoogle Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations