Advertisement

Spray Nozzles

  • K. OmerEmail author
  • N. Ashgriz
Chapter

Abstract

Spray nozzles are used in many applications such as cleaning, cutting, and spraying. Spray nozzles come in many varieties, and are usually classified according to the specific mode of atomization they employ. In this chapter, twin fluid, swirl, hydraulic, ultrasonic, rotary, and electrostatic nozzles are discussed. First, their specific mode of atomization is explained, followed by a brief description on the variation on each type of nozzle. Next, a comprehensive list of performance correlations for each type of nozzle is compiled from various sources. Finally, these correlations are explored in more detail for each type of nozzle.

Keywords

Air blast Air assist Discharge coefficient Effervescent Electrostatic Flat fan nozzles Full cone Hydraulic Hollow cone Rotary SMD Spray angle Spray impact Spray pattern Swirl Twin fluid Ultrasonic 

References

  1. 1.
    Lefebvre, Arthur, Atomization and Sprays, Hemisphere, 1989.Google Scholar
  2. 2.
    Gosman, A. D., and Clerides, D., Diesel Spray Modelling: A Review, Conference of Liquid Atomization and Spray Systems, 1998.Google Scholar
  3. 3.
    Mansour, A. B., Buca, P. V., Harvey, R. J., Aiken, K. L., and Duncan, J. F., Multi-function Simplex/Prefilmer Nozzle. U.S. Patent 6 920 749, July 26, 2005.Google Scholar
  4. 4.
    Lefebvre, A. H., Energy Considerations in Twin-Fluid Atomization, ASME Paper, Vol. 114, GTP000089, 1992, pp. 89–96.Google Scholar
  5. 5.
    Barreras, F., and Eduardo, L., Experimental Characterization of Industrial Twin-Fluid Atomizers, Atomization Sprays J. Inst. Liq. Atomization Spray Syst, Vol. 16, No. 2, 2006, pp. 127–145.Google Scholar
  6. 6.
    Ganippa, L. C., Andersson, S., and Chomiak J., Combustion Characteristics of Diesel Sprays from Equivalent Nozzles with Sharp and Rounded Inlet Geometries, Combust. Sci. Technol., vol. 175, 2003, pp. 1015–1032.CrossRefGoogle Scholar
  7. 7.
    Rizkalla, A., and Lefebvre, A. H., The Influence of Air and Liquid Properties on Air Blast Atomization, ASME J. Fluids Eng., Vol. 97, No. 3, 1975, pp. 316–320.CrossRefGoogle Scholar
  8. 8.
    Jasuga, A. K., Atomization of Crude and Residual Fuel Oils, ASME J. Eng. Power, Vol. 101, No. 2, 1979, pp. 250–258.CrossRefGoogle Scholar
  9. 9.
    Knoll, K. E., and Sojka, P. E., Flat-Sheet Twin-Fluid Atomization of High-Viscosity Fluids, Part I: Newtonian Fluids, Atomization Sprays, Vol. 2, 1992, pp. 17–36.Google Scholar
  10. 10.
    Sovani, S. D., Sojka, P. E., and Lefebvre, A. H., Effervescent Atomization, Prog. Energy Combust., Vol. 27, 2001, pp. 483–521.CrossRefGoogle Scholar
  11. 11.
    Rashkovan, A., Kholmer, V., and Sher, E., Effervescent Atomization of Gasoline Containing Dissolved CO2, Atomization Sprays, Vol. 14, No. 4, 2004, pp. 341–354.CrossRefGoogle Scholar
  12. 12.
    Lasheras, J.C., and Hopfinger, E.J., Liquid Jet Instability and Atomization in a Coaxial Gas Stream, Annu. Rev. Fluid Mech. 2000, pp. 32:275–308.CrossRefGoogle Scholar
  13. 13.
    Lozano A., and Barreras F., Experimental Study of the Gas Flow in an Air-Blasted Liquid Sheet, Exp. Fluids, Vol. 31, 2001, pp. 367–376.CrossRefGoogle Scholar
  14. 14.
    Kim, K. Y., and Marshall, W. R. Jr., Characteristics of Pneumatic Atomizers, AIChE J., Vol. 17, No. 3, 1971, pp. 575–584.Google Scholar
  15. 15.
    Nukiyama, S., and Tanasawa, Y., Experiments on the Atomization of Liquids in an Airstream, Trans. Soc. Mech. Eng. Jpn., Vol. 5, 1939, pp. 68–75.Google Scholar
  16. 16.
    Browner, R. F., Experimental Evaluation of the Nukiyama-Tanasawa Equation for Pneumatic Nebulisers Used in Plasma Atomic Emission Electroscopy, J. Anal. Atom. Spectrosc., Vol. 6, February 1990, pp. 61–66.Google Scholar
  17. 17.
    Kahen, K., Acon, B. W., and Montaser, A., Modified Nukiyama-Tanasawa and Rizk-Lefebvre Models to Predict Droplets Size for Microconcentric Nebulizers with Aqueous and Organic Solvents. vol. 33, Issue 6, pp. 455–962.Google Scholar
  18. 18.
    Lorenzetto, G. E., and Lefebvre, A. H., Measurements on Drop Size on a Plain jet Air Blast Atomizer, AIAA J., Vol. 15, No. 7, 1977, pp. 1001–1010.CrossRefGoogle Scholar
  19. 19.
    Rizk, N. K., and Lefebvre, A. H., Spray Characteristics of Plain Jet Airblast Atomizers, Trans. ASME J. Eng. Gas Turbines Power, Vol. 106, July 1984, pp. 639–644.CrossRefGoogle Scholar
  20. 20.
    Ingebo, R. D., and Foster, H. H., Drop Size Distribution for Cross-Current Breakup of Liquid Jets in Air Streams, NACA TN 4087, 1957.Google Scholar
  21. 21.
    Ingebo, R. D., Capillary and Acceleration Wave Breakup of Liquid Jets in Axial Flow Air-Streams, NASA Technical Paper, 1981, p. 1791.Google Scholar
  22. 22.
    Harari, R., and Sher, E., Optimization of a Plain-Jet Atomizer, Atomization Sprays J. Inst. Liq. Atomization Spray Syst., Vol. 7, No. 1, 1997, pp. 97–113.Google Scholar
  23. 23.
    Broniarz-Press, L., Ochowiak, M., Rozanski, J., and Woziwodzki, S., The Atomization of Water-Oil Emulsions, Exp. Thermal Fluid Sci., J. Anal. At. Spac from., vol. 20, 2009, pp. 631–637.Google Scholar
  24. 24.
    Issac, K., Missoum, A., Drallmeier, J., and Johnston, A., Atomization Experiments in a Coaxial Coflowing Mach 1.5 Flow, AIAA J. Vol., 32, No. 8, 1994, pp. 1640–1646.Google Scholar
  25. 25.
    Mulhem, B., Schulte, G., and Fritsching U., Solid-Liquid Separation in Suspension Atomization, Chemical Engineering Science, Vol. 61, 2006, pp. 2582–2589.CrossRefGoogle Scholar
  26. 26.
    Liu H. F., Li, W. F., Gong, X., Cao, X. K., Xu, J. L., Chen, X. L., Wang, Y. F., Yu, G. S., Wang, F. C., and Yu, Z. H., Effect of Liquid Jet Diameter on Performance of Coaxial Two-Fluid Airblast Atomizers, Chemical Engineering and Processing, Vol. 45, No. 4, 2006, pp. 240–245.CrossRefGoogle Scholar
  27. 27.
    Antkowiak, W., and Heim, A., Investigation of Pneumatic Spray Nozzle for Wetting Granulate Fine Material, Inzynieria Chemiczna i Procesowa (Chem. Process Eng.), Vol. 8, No. 1, 1987, pp. 57–65 (in Polish).Google Scholar
  28. 28.
    Sakai, T., Kito M., Saito M., and Kanbe T., Characteristics of Internal Mixing Twin-Fluid Atomizers, Proceedings of the 1st International Conference on Liquid Atomization and Sprays, Tokyo, 1978, pp. 235–241.Google Scholar
  29. 29.
    Wu, P. K., Miranda, R. F., and Faeth, G. M., Effects of Initial Flow Conditions on Primary Breakup of Nonturbulent and Turbulent Round Liquid Jets. Atom. Sprays, Vol. 5, 1995, pp. 176–196.Google Scholar
  30. 30.
    Simmons, H. C., The Prediction of Sauter Mean Diameter for Gas Turbine Fuel Nozzles of Different Types, ASME Paper 79-WA/GT-5, 1979.Google Scholar
  31. 31.
    Imamura T., and Nagai, N., The Relative Performance of Externally Mixed Twin Fluid Atomizers, Proceedings of the 3rd International Conference on Liquid Atomization and Sprays, London, July 1985.Google Scholar
  32. 32.
    Elkotb, M. M., Madhy, M. A., and Montaser, M. E., Investigation of External-Mixing Airblast Atomizers, Proceedings of the 2nd International Conference on Liquid Atomization and Sprays, Madison, 1982, pp. 105–115.Google Scholar
  33. 33.
    Levy, Y., Sherbaum, V., Ovcharenko, V., Sotsenko, Y., and Zlochin, I., Study and Field Tests of the Novel Low Pressure Fogger System for Industrial Gas Turbine, J. Eng. Gas Turbines Power, Vol. 130, No. 1, 2008. pp. 012002.1–012002.7CrossRefGoogle Scholar
  34. 34.
    Hewitt, A. J., Droplet Size Spectra Produced by Air-Assisted Atomizers, J. Aerosol Sci., Vol. 24, No. 2, 1993, pp. 155–162.CrossRefMathSciNetGoogle Scholar
  35. 35.
    Esfarjani, S. A. and Dolatabadi, A., A 3D Simulation of Two-Phase Flow in an Effervescent Atomizer for Suspension Plasma Spray, Surf. Coat. Technol., Vol. 203, No. 15, 2009, pp. 2074–2080.CrossRefGoogle Scholar
  36. 36.
    Lund, M. T., Sojka, P. E., Lefebvre, A. H., and Gosselin, P. G.. Effervescent Atomization at Low Mass Flow Rates. Part 1: The Influence of Surface Tension, Atomization Sprays, Vol. 3, 1993, pp. 77–89.Google Scholar
  37. 37.
    Whitlow, J. D., Lefebvre, A. H., Effervescent Atomizer Operation and Spray Characteristics, Atomization Sprays, Vol. 3, 1993, pp. 137–156.Google Scholar
  38. 38.
    Sutherland, J. J., Sojka, P. E., and Plesniak, M. W., Ligament Controlled Effervescent Atomization. Atomization Sprays, Vol. 7, No. 4, 1997, pp. 383–406.Google Scholar
  39. 39.
    Sovani, S. D., Sojka, P. E., and Sivathanu, Y. R., Predictions of Drop Size Distributions from First Principles: Joint-PDF Effects, Atomization Sprays, Vol. 10, No. 6, 2000, pp. 587–602.Google Scholar
  40. 40.
    Huang, X., Wang, X., and Liao, G., Visualization of Two Phase Flow Inside an Effervescent Atomizer, J. Visual., Vol. 11, No. 4, 2008, pp. 299–308.CrossRefGoogle Scholar
  41. 41.
    Buckner, H. E., and Sojka, P. E., Effervescent Atomization of Higher Viscosity Fluids. Part 2: Non-Newtonian Fluids, Atomization Sprays, Vol. 3, 1993, pp. 157–170.Google Scholar
  42. 42.
    Lin, J., Qian, L., and Xiong, H., Relationship Between Deposition Properties and Operating Parameters for Droplet onto Surface in the Atomization Impinging Spray, Powder Technology, Vol. 191, No. 3, April 2009, pp. 340–348.CrossRefGoogle Scholar
  43. 43.
    Qian, L., Lin, J., and Xiong, H., A Fitting Formula for Predicting Droplet Mean Diameter for Various Liquid in Effervescent Atomization Spray, J. Thermal Spray Technol., 2009, pp. 1–16, DOI: 10.1007/s11666-009-9457-4.Google Scholar
  44. 44.
    Xiong, H.-B., Lin, J.-Z., and Zhu, Z.-F., Three-Dimensional Simulation of Effervescent Atomization Spray, Atomization Sprays, Vol. 19, No. 1, 2008, pp. 75–90.CrossRefGoogle Scholar
  45. 45.
    Kim, H. G., Yano, T., Song, K. K., and Shuichi, T., Microscopic Spray Characteristics in the Effervescent Atomizer with Two Aerator Tubes, KSME Int. J., Vol. 18, No. 9, 2004, pp. 1661–1667.Google Scholar
  46. 46.
    Tanasawa, Y., and Toyoda, S., On the Atomization of Liquid Jet Issuing from a Cylindrical Nozzle, Tech. Report of Tohuku University, Japan, No. 19-2, 1955, p. 135.Google Scholar
  47. 47.
    Harmon, D. B., Drop sites from Low Speed Jets. J. Franklin Inst., Vol. 259, 1955, p. 519.CrossRefGoogle Scholar
  48. 48.
    Merrington, A. C., and Richardson, E. G., The Break-up of Liquid Sheets, Proc. Phys. Soc. London, Vol. 59, No. 33, 1947, pp. 1–13.Google Scholar
  49. 49.
    Miesse, C. C., Correlation of Experimental Data on the Disintegration of Liquid jets, Ind. Chem. Eng., Vol. 47, No. 9, 1955, pp. 1690–1701.CrossRefGoogle Scholar
  50. 50.
    Hiroyasu, H., and Katoda, T., Fuel Droplet Size Distribution in a Diesel Combustion Chamber, SAE Trans., Paper 74017, 1974.Google Scholar
  51. 51.
    Elkotb, M. M., Fuel Atomization for Spray Modeling, Prog. Energy Combust. Sci., Vol. 8, No. 1, 1982, pp. 61–91.CrossRefGoogle Scholar
  52. 52.
    Dumouchel, C., On the Experimental Investigation on Primary Atomization of Liquid Streams, Exp. Fluids, Vol. 45, 2008, pp. 371–422.CrossRefGoogle Scholar
  53. 53.
    Sallam, K. A., Dai, Z., and Faeth, G. M., Drop Formation at the Surface of Plane Turbulent Liquid Jets in Still Gases, Int. J. Multiphase Flow, Volume 25, No. 6–7, September 1999, pp. 1161–1180.zbMATHCrossRefGoogle Scholar
  54. 54.
    Sallam, K. A., and Faeth, G. M., Surface Properties During Primary Breakup of Turbulent Liquid Jets in Still Air, AIAA Journal, Vol. 41, No. 8, August 2003, pp. 1514–1524.CrossRefGoogle Scholar
  55. 55.
    Lee, K., Aalburg, C., Diez, F. J., Faeth, G. M., and Sallam, K. A., Primary Breakup of Turbulent Round Jets in Uniform Crossflows, AIAA Journal, Vol. 45, No. 8, August 2007, pp. 1907–1916.CrossRefGoogle Scholar
  56. 56.
    Cleary, V., Bowen, P., and Witlox, H., Flashing Liquid Jets and Two-Phase Droplet Dispersion: 1. Experiments for Derivation of Droplet Atomization Correlations, J. Hazard. Mater., Vol. 142, No. 3, April 2007, pp. 786–796.CrossRefGoogle Scholar
  57. 57.
    Bayvel, L., and Orzechowski, Z., Liquid Atomization, Taylor & Francis, Washington, 1993.Google Scholar
  58. 58.
    Kreith, F. and Goswami, D. Y., The CRC Handbook of Mechanical Engineering, CRC Press, Boca Raton, 2004.CrossRefGoogle Scholar
  59. 59.
    Hasson, D., and Mizrahi, J., The Drop Size of Fan Spray Nozzle, Measurements by the Solidifying Wax Method Compared with Those Obtained by Other Sizing Techniques, Trans. Inst. Chem. Eng., Vol. 39, No. 6, 1961, pp. 415–422.Google Scholar
  60. 60.
    Dombrowski, N., and Munday, G., Spray Drying, Biochemical and Biological Engineering Science, Vol. 2,  Chapter 16, Academic, New York, pp. 209–320, 1968.Google Scholar
  61. 61.
    Dombrowski, M., and Hooper, P. C., The Effect on Ambient Density on Drop Formation in Sprays, Chem. Eng. Sci., Vol. 17, 1962, pp. 291–305.CrossRefGoogle Scholar
  62. 62.
    Kawamura, K., Saito, A., Kanda, M., Kashiwagura, T., and Yamamoto, Y., Spray Characteristics of Slit Nozzle for DI Gasoline Engines, JSME Int. J., Series B, Vol. 46, No. 1, 2003, pp. 10–16.Google Scholar
  63. 63.
    Lefebvre, Arthur, Gas Turbine Combustion, Taylor & Francis, Boca Raton, 1998.Google Scholar
  64. 64.
    Khavkin, Y. I., Theory and Practice of Swirl Atomizers, Taylor & Francis, New York, 2004.Google Scholar
  65. 65.
    Wang, X. F., and Lefebvre, A. H., Atomization Performance of Pressure Swirl Nozzles, AIAA Paper, 1986.Google Scholar
  66. 66.
    Couto, H. S., Carvalho, J. A., and Bastos-Netto, D., Theoretical Formulation for Sauter Mean Diameter of Pressure Swirl Atomizers, J. Propul. Power, Vol. 13, No. 5, 1997, pp. 691–696.CrossRefGoogle Scholar
  67. 67.
    Babu, K. R., Narasimhan, M. V., and Narayanaswamy, K., Prediction of Mean Drop Size of Fuel Sprays from Swirl Spray Atomizers, Proceedings of the 2nd International Conference on Liquid Atomization and Sprays, Madison, 1982, pp. 99–106.Google Scholar
  68. 68.
    Park, B. S., Kim, H. Y., Kim, Y., and Chung, T. K., An Experimental Study on the Spray Characteristics of a Dual-Orifice Type Swirl Injector at Low Fuel Temperatures, KSME Int. J., Vol. 18, No. 7, 2004, pp. 1187–1195.Google Scholar
  69. 69.
    Orzechowski, A., Liquid Atomization, WNT, Warsaw, 1976 (in Polish).Google Scholar
  70. 70.
    Radcliffe, A., Fuel Injection, High Speed Aerodynamics and Jet Propulsion, Vol. X1, Sect. D, Pinceton University Press, Princeton, N. J., 1960.Google Scholar
  71. 71.
    Kennedy, J. B., High Weber Number SMD Correlations for Pressure Atomizers, ASME Paper 85-GT-37, 1985.Google Scholar
  72. 72.
    Jones, A.R., Design Optimization of a Large Pressure-Jet Atomizer for Power-Plant, Proceedings of the 2nd International Conference on Liquid Atomization and Sprays, Madison, WI, 1992, pp. 181–185.Google Scholar
  73. 73.
    Petela, R., and Zajdel, A., Atomization of Coal-Liquid Mixtures, Fuel, Vol. 59, No. 7, July 1980. pp. 495–498.CrossRefGoogle Scholar
  74. 74.
    Zajdel, A., Investigation of Dust-Liquid Fuel. Ph.D. Thesis, Silesian Polytechnic, Gliwice, Poland, 1979 (in Polish).Google Scholar
  75. 75.
    Bär, P., Dr. Eng. Dissertation, Technical College, Karlsruhe, Germany, 1935.Google Scholar
  76. 76.
    Walton, W. H., and Prewett, W. G., The production of sprays and mists of Unifrom Prof sites by means fo spinning Disc Type Sprauers. Proc. Phys. Soc. London Sect. B, Vol. 62, 1949, p. 341.CrossRefGoogle Scholar
  77. 77.
    Fraser, R. P., and Eisenklam, P., Liquid Atomization on the Drop Size of Sprays, Trans. Inst. Chem. Eng., Vol. 34, 1956, pp. 294–319.Google Scholar
  78. 78.
    Tanasawa, Y., Miyasaka, Y., and Umehara, M., Effect of Shape of Rotating Disks and Cups on Liquid Atomization, Proceedings of the 1st International Conference on Liquid Atomization and Spray Systems, Tokyo, 1978, pp. 165–172.Google Scholar
  79. 79.
    Matsumoto, S., Saito, K., and Takashima, Y., J. Phenomenal Transition of liquie Atortation form Disk. Chem. Eng. Jpn., Vol. 7, 1974, p. 13.CrossRefGoogle Scholar
  80. 80.
    Troshkin, O. A., Hydraulic Design of the Centrifugal Cylindrical Sprayer, Khim. Nett. Mashinostr., No. 5, 1984 (in Russian). Vol. 20, no. 5, pp. 252–254.Google Scholar
  81. 81.
    Oyama, Y., and Endou, K., On the Centrifugal Disk Atomization and Studies on the Atomization of Water Droplets, Kagaku Kagaku, Vol. 17, 1953, pp. 256–260, 269–275 (in Japanese, English summary).Google Scholar
  82. 82.
    Hege, H. Aufbereit. Tech., Die Aufiusung von Flvissigaeiten in tropten. 1969, Vol. 10, no. 3, pp. 142–147.Google Scholar
  83. 83.
    Matsumoto, S., and Takashima, Y., Droplet size Distribution in sprcy. Kagaku Kagaku, no. 4, Vol. 33, 1969, pp. 357–360.Google Scholar
  84. 84.
    Kayano, A., and Kamiya, T., Calculation of the Mean Drop Size of the Droplets Purged from the Rotating Disks, Proceedings of the 1st International Conference on Liquid Atomization and Sprays, Tokyo, 1978, pp. 133–143.Google Scholar
  85. 85.
    Friedman, S. J., Gluckert, F. A., and Marshall, W. R., Chem. Eng. Prog., Vol. 48, No. 4, 1952, p. 181.Google Scholar
  86. 86.
    Herring, W. H., and Marhsall, W. R., Performance fo Vuned-Disk Atomiters. J. Am. Inst. Chem. Eng., Vol. 1, No. 2, 1955, p. 200–209.Google Scholar
  87. 87.
    Fraser, R. P., Dombrowski, N., and Routley, J. H., The Production of Uniform Liquid Sheets from Spinning Cups; The Filming by Spinning Cups; The Atomization of a Liquid Sheet by an Impinging Air Stream, Chem. Eng. Sci., Vo. 18, 1963, pp. 315–321, 323–337, 339–353.CrossRefGoogle Scholar
  88. 88.
    Scott, M. N., Robinson, M. J., Pauls, J. F., and Lantz, R. J., J. Pharm. Sci., Vol. 53, No. 6, 1964, p. 670.CrossRefGoogle Scholar
  89. 89.
    Willauer, H. D., Mushrush, G. W., and Williams, F. W., Critical Evaluation of Rotary Atomizer, Petrol. Sci. Technol., Vol. 24, 2006, pp. 1215–1232.CrossRefGoogle Scholar
  90. 90.
    Hinze, J. O., and Milborn, H., Atomization of Liquids by Means of a Rotating Cup, ASME J. Appl. Mech., Vol. 17, No. 2, 1950, pp. 145–153.Google Scholar
  91. 91.
    Tumanovski, A. G., Semichastnyi, N. N., and Akhrameev, V. I., Application of Air-Assisted Atomizers for Fuel Atomizers in Stationary Gas Turbines, Teploenergetika, No. 11, 1984 (in Russian).Google Scholar
  92. 92.
    Berger, H., Ultrasonic Liquid Atomization: Theory and Application, 2nd ed., Hyde Park: Partrige Hill, 2006.Google Scholar
  93. 93.
    Mochida, T., Ultrasonic Atomization of Liquids, Proceedings of the 1st International Conference on Liquid Atomization and Sprays, Tokyo, 1978, pp. 193–200.Google Scholar
  94. 94.
    Hansmann, S., Einfluss von Stoff- und Betriebsparametern auf die Zerstäubung hochviskoser Flüssigkeiten im Ultraschall-Stehwellenfeld, Disseration, Universität Bremen, 1996.Google Scholar
  95. 95.
    Bauckhage, K., Andersen, O., Hansmann, S., Reich, W., and Schreckenberg, P., Production of Fine Powders by Ultrasonic Standing Wave Atomization, Powder Technol., Vol. 86, No. 1, 1996, pp. 77–86.CrossRefGoogle Scholar
  96. 96.
    Lang, R. S. J., Ultrasonic Atomization of Liquids, J. Acoust. Soc. Am., Vol. 34, No. 1, 1962, pp. 6–8.CrossRefGoogle Scholar
  97. 97.
    Peskin, R. L., and Raco, R. J., Ultrasonic Atomization of Liquids, J. Acoust. Soc. Am., Vol. 25, No. 9, September 1963, pp. 1378–1381.CrossRefGoogle Scholar
  98. 98.
    Dobre, M., and Bolle, L., Practical Design of Ultrasonic Spray Devices: Experimental Testing of Several Atomizer Geometries, Exp. Thermal Fluid Sci., Vol. 26, No. 2–4, June 2002, pp. 205–211.CrossRefGoogle Scholar
  99. 99.
    Graf, P. E., Breakup of Small Liquid Volume by Electrical Charging, Proceedings of API Research Conference on Distillate Fuel Combustion, API Publication 1701, Paper CP62-4, 1962.Google Scholar
  100. 100.
    Nasr, Y., and Bendig, L., Industrial Sprays and Atomization, Springer, London, 2002.Google Scholar
  101. 101.
    El-Shanawany, M. S. M. R., and Lefebvre, A. H., Airblast Atomization: The Effect of Linear Scale on Mean Drop Size, J. Energy, Vol. 4, No. 4, 1980, pp. 184–189.CrossRefGoogle Scholar
  102. 102.
    Jasuja, A. K., and Lefebvre, A. H., Influence of Ambient Pressure on Drop Size and Velocity Distributions in Dense Sprays. Twenty-Fifth Symposium (International) on Combustion, The Combustion Institute, Pittsburg, pp. 345–352.Google Scholar
  103. 103.
    Fraser, R. P., Eisenklam, P., and Dombrowski, N., Liqued Atomitation in Chemical Engineering. Br. Chem. Eng., Vol. 2, No. 9, 1957, pp. 414–417, 491–501, 536–543, 610–613.Google Scholar
  104. 104.
    Valeev, R. S., Kudryavtstev, A. V., and Kuntsev, G. M., Experimental Investigation of Atomization of a Liquid Jet Fed Perpendicularly to the Gas Jet, Izv. Vyssh. Uchebn. Zaved. “Aviatsionnoya Tetkhnika,” No. 3, 1984 (in Russian). pp. 87–88.Google Scholar
  105. 105.
    Baik, S., Blanchard, J. P., and Carradini, M. L., Development of Micro-Diesel Injector Nozzles via Microelectromehcanical Systems Technology and Effects on Spray Characteristics, J. Eng. Gas Turbines Power, vol. 125, April 2003, pp. 427–434.CrossRefGoogle Scholar
  106. 106.
    Panasenkov, N. J., Zh. Tekh. Fiz., Vol. 21, 1951, p. 160.Google Scholar
  107. 107.
    Mori, Y., Hijikata, K., and Nagasaki, T., Electrostatic Atomization for Small Droplets of Uniform Diameter, Trans. Jpn. Soc. Mech. Eng. Ser. B, 1981, Vol. 47, pp. 1881–1890.Google Scholar
  108. 108.
    Bandyopadhyay, A., and Biswas, M. N., Spray Scrubbing of Particulates with a Critical Flow Atomizer, Chem. Eng. Technol., Vol. 30, No. 12, 2007, pp. 1674–1685.CrossRefGoogle Scholar
  109. 109.
    Dickerson, R., Tate, K., and Barsic, N., Correlation of Spray Injector Parameters with Rocket Engine Performance, Technical Report AFRPL-TR-68-147, Rocketdyne Division of North American Rockwell Corporation, Canoga Park, Calif., June, 1968.Google Scholar
  110. 110.
    Zajac. L., Correlation of Spray Drop size Distribution and Injector Variables, Rocketdyne Report R-8455, Contract NAS7-726, February 1971.Google Scholar
  111. 111.
    Nonnenmacher, S., and Piesche, M., Design of Hollow Cone Pressure Swirl Nozzles to Atomize Newtonian Fluids, Chemical Engineering Science, Vol. 55, 2000, pp. 4339–4348.CrossRefGoogle Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations