Skip to main content

Spray Nozzles

  • Chapter
  • First Online:
Handbook of Atomization and Sprays

Abstract

Spray nozzles are used in many applications such as cleaning, cutting, and spraying. Spray nozzles come in many varieties, and are usually classified according to the specific mode of atomization they employ. In this chapter, twin fluid, swirl, hydraulic, ultrasonic, rotary, and electrostatic nozzles are discussed. First, their specific mode of atomization is explained, followed by a brief description on the variation on each type of nozzle. Next, a comprehensive list of performance correlations for each type of nozzle is compiled from various sources. Finally, these correlations are explored in more detail for each type of nozzle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lefebvre, Arthur, Atomization and Sprays, Hemisphere, 1989.

    Google Scholar 

  2. Gosman, A. D., and Clerides, D., Diesel Spray Modelling: A Review, Conference of Liquid Atomization and Spray Systems, 1998.

    Google Scholar 

  3. Mansour, A. B., Buca, P. V., Harvey, R. J., Aiken, K. L., and Duncan, J. F., Multi-function Simplex/Prefilmer Nozzle. U.S. Patent 6 920 749, July 26, 2005.

    Google Scholar 

  4. Lefebvre, A. H., Energy Considerations in Twin-Fluid Atomization, ASME Paper, Vol. 114, GTP000089, 1992, pp. 89–96.

    Google Scholar 

  5. Barreras, F., and Eduardo, L., Experimental Characterization of Industrial Twin-Fluid Atomizers, Atomization Sprays J. Inst. Liq. Atomization Spray Syst, Vol. 16, No. 2, 2006, pp. 127–145.

    Google Scholar 

  6. Ganippa, L. C., Andersson, S., and Chomiak J., Combustion Characteristics of Diesel Sprays from Equivalent Nozzles with Sharp and Rounded Inlet Geometries, Combust. Sci. Technol., vol. 175, 2003, pp. 1015–1032.

    Article  Google Scholar 

  7. Rizkalla, A., and Lefebvre, A. H., The Influence of Air and Liquid Properties on Air Blast Atomization, ASME J. Fluids Eng., Vol. 97, No. 3, 1975, pp. 316–320.

    Article  Google Scholar 

  8. Jasuga, A. K., Atomization of Crude and Residual Fuel Oils, ASME J. Eng. Power, Vol. 101, No. 2, 1979, pp. 250–258.

    Article  Google Scholar 

  9. Knoll, K. E., and Sojka, P. E., Flat-Sheet Twin-Fluid Atomization of High-Viscosity Fluids, Part I: Newtonian Fluids, Atomization Sprays, Vol. 2, 1992, pp. 17–36.

    Google Scholar 

  10. Sovani, S. D., Sojka, P. E., and Lefebvre, A. H., Effervescent Atomization, Prog. Energy Combust., Vol. 27, 2001, pp. 483–521.

    Article  Google Scholar 

  11. Rashkovan, A., Kholmer, V., and Sher, E., Effervescent Atomization of Gasoline Containing Dissolved CO2, Atomization Sprays, Vol. 14, No. 4, 2004, pp. 341–354.

    Article  Google Scholar 

  12. Lasheras, J.C., and Hopfinger, E.J., Liquid Jet Instability and Atomization in a Coaxial Gas Stream, Annu. Rev. Fluid Mech. 2000, pp. 32:275–308.

    Article  Google Scholar 

  13. Lozano A., and Barreras F., Experimental Study of the Gas Flow in an Air-Blasted Liquid Sheet, Exp. Fluids, Vol. 31, 2001, pp. 367–376.

    Article  Google Scholar 

  14. Kim, K. Y., and Marshall, W. R. Jr., Characteristics of Pneumatic Atomizers, AIChE J., Vol. 17, No. 3, 1971, pp. 575–584.

    Google Scholar 

  15. Nukiyama, S., and Tanasawa, Y., Experiments on the Atomization of Liquids in an Airstream, Trans. Soc. Mech. Eng. Jpn., Vol. 5, 1939, pp. 68–75.

    Google Scholar 

  16. Browner, R. F., Experimental Evaluation of the Nukiyama-Tanasawa Equation for Pneumatic Nebulisers Used in Plasma Atomic Emission Electroscopy, J. Anal. Atom. Spectrosc., Vol. 6, February 1990, pp. 61–66.

    Google Scholar 

  17. Kahen, K., Acon, B. W., and Montaser, A., Modified Nukiyama-Tanasawa and Rizk-Lefebvre Models to Predict Droplets Size for Microconcentric Nebulizers with Aqueous and Organic Solvents. vol. 33, Issue 6, pp. 455–962.

    Google Scholar 

  18. Lorenzetto, G. E., and Lefebvre, A. H., Measurements on Drop Size on a Plain jet Air Blast Atomizer, AIAA J., Vol. 15, No. 7, 1977, pp. 1001–1010.

    Article  Google Scholar 

  19. Rizk, N. K., and Lefebvre, A. H., Spray Characteristics of Plain Jet Airblast Atomizers, Trans. ASME J. Eng. Gas Turbines Power, Vol. 106, July 1984, pp. 639–644.

    Article  Google Scholar 

  20. Ingebo, R. D., and Foster, H. H., Drop Size Distribution for Cross-Current Breakup of Liquid Jets in Air Streams, NACA TN 4087, 1957.

    Google Scholar 

  21. Ingebo, R. D., Capillary and Acceleration Wave Breakup of Liquid Jets in Axial Flow Air-Streams, NASA Technical Paper, 1981, p. 1791.

    Google Scholar 

  22. Harari, R., and Sher, E., Optimization of a Plain-Jet Atomizer, Atomization Sprays J. Inst. Liq. Atomization Spray Syst., Vol. 7, No. 1, 1997, pp. 97–113.

    Google Scholar 

  23. Broniarz-Press, L., Ochowiak, M., Rozanski, J., and Woziwodzki, S., The Atomization of Water-Oil Emulsions, Exp. Thermal Fluid Sci., J. Anal. At. Spac from., vol. 20, 2009, pp. 631–637.

    Google Scholar 

  24. Issac, K., Missoum, A., Drallmeier, J., and Johnston, A., Atomization Experiments in a Coaxial Coflowing Mach 1.5 Flow, AIAA J. Vol., 32, No. 8, 1994, pp. 1640–1646.

    Google Scholar 

  25. Mulhem, B., Schulte, G., and Fritsching U., Solid-Liquid Separation in Suspension Atomization, Chemical Engineering Science, Vol. 61, 2006, pp. 2582–2589.

    Article  Google Scholar 

  26. Liu H. F., Li, W. F., Gong, X., Cao, X. K., Xu, J. L., Chen, X. L., Wang, Y. F., Yu, G. S., Wang, F. C., and Yu, Z. H., Effect of Liquid Jet Diameter on Performance of Coaxial Two-Fluid Airblast Atomizers, Chemical Engineering and Processing, Vol. 45, No. 4, 2006, pp. 240–245.

    Article  Google Scholar 

  27. Antkowiak, W., and Heim, A., Investigation of Pneumatic Spray Nozzle for Wetting Granulate Fine Material, Inzynieria Chemiczna i Procesowa (Chem. Process Eng.), Vol. 8, No. 1, 1987, pp. 57–65 (in Polish).

    Google Scholar 

  28. Sakai, T., Kito M., Saito M., and Kanbe T., Characteristics of Internal Mixing Twin-Fluid Atomizers, Proceedings of the 1st International Conference on Liquid Atomization and Sprays, Tokyo, 1978, pp. 235–241.

    Google Scholar 

  29. Wu, P. K., Miranda, R. F., and Faeth, G. M., Effects of Initial Flow Conditions on Primary Breakup of Nonturbulent and Turbulent Round Liquid Jets. Atom. Sprays, Vol. 5, 1995, pp. 176–196.

    Google Scholar 

  30. Simmons, H. C., The Prediction of Sauter Mean Diameter for Gas Turbine Fuel Nozzles of Different Types, ASME Paper 79-WA/GT-5, 1979.

    Google Scholar 

  31. Imamura T., and Nagai, N., The Relative Performance of Externally Mixed Twin Fluid Atomizers, Proceedings of the 3rd International Conference on Liquid Atomization and Sprays, London, July 1985.

    Google Scholar 

  32. Elkotb, M. M., Madhy, M. A., and Montaser, M. E., Investigation of External-Mixing Airblast Atomizers, Proceedings of the 2nd International Conference on Liquid Atomization and Sprays, Madison, 1982, pp. 105–115.

    Google Scholar 

  33. Levy, Y., Sherbaum, V., Ovcharenko, V., Sotsenko, Y., and Zlochin, I., Study and Field Tests of the Novel Low Pressure Fogger System for Industrial Gas Turbine, J. Eng. Gas Turbines Power, Vol. 130, No. 1, 2008. pp. 012002.1–012002.7

    Article  Google Scholar 

  34. Hewitt, A. J., Droplet Size Spectra Produced by Air-Assisted Atomizers, J. Aerosol Sci., Vol. 24, No. 2, 1993, pp. 155–162.

    Article  MathSciNet  Google Scholar 

  35. Esfarjani, S. A. and Dolatabadi, A., A 3D Simulation of Two-Phase Flow in an Effervescent Atomizer for Suspension Plasma Spray, Surf. Coat. Technol., Vol. 203, No. 15, 2009, pp. 2074–2080.

    Article  Google Scholar 

  36. Lund, M. T., Sojka, P. E., Lefebvre, A. H., and Gosselin, P. G.. Effervescent Atomization at Low Mass Flow Rates. Part 1: The Influence of Surface Tension, Atomization Sprays, Vol. 3, 1993, pp. 77–89.

    Google Scholar 

  37. Whitlow, J. D., Lefebvre, A. H., Effervescent Atomizer Operation and Spray Characteristics, Atomization Sprays, Vol. 3, 1993, pp. 137–156.

    Google Scholar 

  38. Sutherland, J. J., Sojka, P. E., and Plesniak, M. W., Ligament Controlled Effervescent Atomization. Atomization Sprays, Vol. 7, No. 4, 1997, pp. 383–406.

    Google Scholar 

  39. Sovani, S. D., Sojka, P. E., and Sivathanu, Y. R., Predictions of Drop Size Distributions from First Principles: Joint-PDF Effects, Atomization Sprays, Vol. 10, No. 6, 2000, pp. 587–602.

    Google Scholar 

  40. Huang, X., Wang, X., and Liao, G., Visualization of Two Phase Flow Inside an Effervescent Atomizer, J. Visual., Vol. 11, No. 4, 2008, pp. 299–308.

    Article  Google Scholar 

  41. Buckner, H. E., and Sojka, P. E., Effervescent Atomization of Higher Viscosity Fluids. Part 2: Non-Newtonian Fluids, Atomization Sprays, Vol. 3, 1993, pp. 157–170.

    Google Scholar 

  42. Lin, J., Qian, L., and Xiong, H., Relationship Between Deposition Properties and Operating Parameters for Droplet onto Surface in the Atomization Impinging Spray, Powder Technology, Vol. 191, No. 3, April 2009, pp. 340–348.

    Article  Google Scholar 

  43. Qian, L., Lin, J., and Xiong, H., A Fitting Formula for Predicting Droplet Mean Diameter for Various Liquid in Effervescent Atomization Spray, J. Thermal Spray Technol., 2009, pp. 1–16, DOI: 10.1007/s11666-009-9457-4.

    Google Scholar 

  44. Xiong, H.-B., Lin, J.-Z., and Zhu, Z.-F., Three-Dimensional Simulation of Effervescent Atomization Spray, Atomization Sprays, Vol. 19, No. 1, 2008, pp. 75–90.

    Article  Google Scholar 

  45. Kim, H. G., Yano, T., Song, K. K., and Shuichi, T., Microscopic Spray Characteristics in the Effervescent Atomizer with Two Aerator Tubes, KSME Int. J., Vol. 18, No. 9, 2004, pp. 1661–1667.

    Google Scholar 

  46. Tanasawa, Y., and Toyoda, S., On the Atomization of Liquid Jet Issuing from a Cylindrical Nozzle, Tech. Report of Tohuku University, Japan, No. 19-2, 1955, p. 135.

    Google Scholar 

  47. Harmon, D. B., Drop sites from Low Speed Jets. J. Franklin Inst., Vol. 259, 1955, p. 519.

    Article  Google Scholar 

  48. Merrington, A. C., and Richardson, E. G., The Break-up of Liquid Sheets, Proc. Phys. Soc. London, Vol. 59, No. 33, 1947, pp. 1–13.

    Google Scholar 

  49. Miesse, C. C., Correlation of Experimental Data on the Disintegration of Liquid jets, Ind. Chem. Eng., Vol. 47, No. 9, 1955, pp. 1690–1701.

    Article  Google Scholar 

  50. Hiroyasu, H., and Katoda, T., Fuel Droplet Size Distribution in a Diesel Combustion Chamber, SAE Trans., Paper 74017, 1974.

    Google Scholar 

  51. Elkotb, M. M., Fuel Atomization for Spray Modeling, Prog. Energy Combust. Sci., Vol. 8, No. 1, 1982, pp. 61–91.

    Article  Google Scholar 

  52. Dumouchel, C., On the Experimental Investigation on Primary Atomization of Liquid Streams, Exp. Fluids, Vol. 45, 2008, pp. 371–422.

    Article  Google Scholar 

  53. Sallam, K. A., Dai, Z., and Faeth, G. M., Drop Formation at the Surface of Plane Turbulent Liquid Jets in Still Gases, Int. J. Multiphase Flow, Volume 25, No. 6–7, September 1999, pp. 1161–1180.

    Article  MATH  Google Scholar 

  54. Sallam, K. A., and Faeth, G. M., Surface Properties During Primary Breakup of Turbulent Liquid Jets in Still Air, AIAA Journal, Vol. 41, No. 8, August 2003, pp. 1514–1524.

    Article  Google Scholar 

  55. Lee, K., Aalburg, C., Diez, F. J., Faeth, G. M., and Sallam, K. A., Primary Breakup of Turbulent Round Jets in Uniform Crossflows, AIAA Journal, Vol. 45, No. 8, August 2007, pp. 1907–1916.

    Article  Google Scholar 

  56. Cleary, V., Bowen, P., and Witlox, H., Flashing Liquid Jets and Two-Phase Droplet Dispersion: 1. Experiments for Derivation of Droplet Atomization Correlations, J. Hazard. Mater., Vol. 142, No. 3, April 2007, pp. 786–796.

    Article  Google Scholar 

  57. Bayvel, L., and Orzechowski, Z., Liquid Atomization, Taylor & Francis, Washington, 1993.

    Google Scholar 

  58. Kreith, F. and Goswami, D. Y., The CRC Handbook of Mechanical Engineering, CRC Press, Boca Raton, 2004.

    Book  Google Scholar 

  59. Hasson, D., and Mizrahi, J., The Drop Size of Fan Spray Nozzle, Measurements by the Solidifying Wax Method Compared with Those Obtained by Other Sizing Techniques, Trans. Inst. Chem. Eng., Vol. 39, No. 6, 1961, pp. 415–422.

    Google Scholar 

  60. Dombrowski, N., and Munday, G., Spray Drying, Biochemical and Biological Engineering Science, Vol. 2, Chapter 16, Academic, New York, pp. 209–320, 1968.

    Google Scholar 

  61. Dombrowski, M., and Hooper, P. C., The Effect on Ambient Density on Drop Formation in Sprays, Chem. Eng. Sci., Vol. 17, 1962, pp. 291–305.

    Article  Google Scholar 

  62. Kawamura, K., Saito, A., Kanda, M., Kashiwagura, T., and Yamamoto, Y., Spray Characteristics of Slit Nozzle for DI Gasoline Engines, JSME Int. J., Series B, Vol. 46, No. 1, 2003, pp. 10–16.

    Google Scholar 

  63. Lefebvre, Arthur, Gas Turbine Combustion, Taylor & Francis, Boca Raton, 1998.

    Google Scholar 

  64. Khavkin, Y. I., Theory and Practice of Swirl Atomizers, Taylor & Francis, New York, 2004.

    Google Scholar 

  65. Wang, X. F., and Lefebvre, A. H., Atomization Performance of Pressure Swirl Nozzles, AIAA Paper, 1986.

    Google Scholar 

  66. Couto, H. S., Carvalho, J. A., and Bastos-Netto, D., Theoretical Formulation for Sauter Mean Diameter of Pressure Swirl Atomizers, J. Propul. Power, Vol. 13, No. 5, 1997, pp. 691–696.

    Article  Google Scholar 

  67. Babu, K. R., Narasimhan, M. V., and Narayanaswamy, K., Prediction of Mean Drop Size of Fuel Sprays from Swirl Spray Atomizers, Proceedings of the 2nd International Conference on Liquid Atomization and Sprays, Madison, 1982, pp. 99–106.

    Google Scholar 

  68. Park, B. S., Kim, H. Y., Kim, Y., and Chung, T. K., An Experimental Study on the Spray Characteristics of a Dual-Orifice Type Swirl Injector at Low Fuel Temperatures, KSME Int. J., Vol. 18, No. 7, 2004, pp. 1187–1195.

    Google Scholar 

  69. Orzechowski, A., Liquid Atomization, WNT, Warsaw, 1976 (in Polish).

    Google Scholar 

  70. Radcliffe, A., Fuel Injection, High Speed Aerodynamics and Jet Propulsion, Vol. X1, Sect. D, Pinceton University Press, Princeton, N. J., 1960.

    Google Scholar 

  71. Kennedy, J. B., High Weber Number SMD Correlations for Pressure Atomizers, ASME Paper 85-GT-37, 1985.

    Google Scholar 

  72. Jones, A.R., Design Optimization of a Large Pressure-Jet Atomizer for Power-Plant, Proceedings of the 2nd International Conference on Liquid Atomization and Sprays, Madison, WI, 1992, pp. 181–185.

    Google Scholar 

  73. Petela, R., and Zajdel, A., Atomization of Coal-Liquid Mixtures, Fuel, Vol. 59, No. 7, July 1980. pp. 495–498.

    Article  Google Scholar 

  74. Zajdel, A., Investigation of Dust-Liquid Fuel. Ph.D. Thesis, Silesian Polytechnic, Gliwice, Poland, 1979 (in Polish).

    Google Scholar 

  75. Bär, P., Dr. Eng. Dissertation, Technical College, Karlsruhe, Germany, 1935.

    Google Scholar 

  76. Walton, W. H., and Prewett, W. G., The production of sprays and mists of Unifrom Prof sites by means fo spinning Disc Type Sprauers. Proc. Phys. Soc. London Sect. B, Vol. 62, 1949, p. 341.

    Article  Google Scholar 

  77. Fraser, R. P., and Eisenklam, P., Liquid Atomization on the Drop Size of Sprays, Trans. Inst. Chem. Eng., Vol. 34, 1956, pp. 294–319.

    Google Scholar 

  78. Tanasawa, Y., Miyasaka, Y., and Umehara, M., Effect of Shape of Rotating Disks and Cups on Liquid Atomization, Proceedings of the 1st International Conference on Liquid Atomization and Spray Systems, Tokyo, 1978, pp. 165–172.

    Google Scholar 

  79. Matsumoto, S., Saito, K., and Takashima, Y., J. Phenomenal Transition of liquie Atortation form Disk. Chem. Eng. Jpn., Vol. 7, 1974, p. 13.

    Article  Google Scholar 

  80. Troshkin, O. A., Hydraulic Design of the Centrifugal Cylindrical Sprayer, Khim. Nett. Mashinostr., No. 5, 1984 (in Russian). Vol. 20, no. 5, pp. 252–254.

    Google Scholar 

  81. Oyama, Y., and Endou, K., On the Centrifugal Disk Atomization and Studies on the Atomization of Water Droplets, Kagaku Kagaku, Vol. 17, 1953, pp. 256–260, 269–275 (in Japanese, English summary).

    Google Scholar 

  82. Hege, H. Aufbereit. Tech., Die Aufiusung von Flvissigaeiten in tropten. 1969, Vol. 10, no. 3, pp. 142–147.

    Google Scholar 

  83. Matsumoto, S., and Takashima, Y., Droplet size Distribution in sprcy. Kagaku Kagaku, no. 4, Vol. 33, 1969, pp. 357–360.

    Google Scholar 

  84. Kayano, A., and Kamiya, T., Calculation of the Mean Drop Size of the Droplets Purged from the Rotating Disks, Proceedings of the 1st International Conference on Liquid Atomization and Sprays, Tokyo, 1978, pp. 133–143.

    Google Scholar 

  85. Friedman, S. J., Gluckert, F. A., and Marshall, W. R., Chem. Eng. Prog., Vol. 48, No. 4, 1952, p. 181.

    Google Scholar 

  86. Herring, W. H., and Marhsall, W. R., Performance fo Vuned-Disk Atomiters. J. Am. Inst. Chem. Eng., Vol. 1, No. 2, 1955, p. 200–209.

    Google Scholar 

  87. Fraser, R. P., Dombrowski, N., and Routley, J. H., The Production of Uniform Liquid Sheets from Spinning Cups; The Filming by Spinning Cups; The Atomization of a Liquid Sheet by an Impinging Air Stream, Chem. Eng. Sci., Vo. 18, 1963, pp. 315–321, 323–337, 339–353.

    Article  Google Scholar 

  88. Scott, M. N., Robinson, M. J., Pauls, J. F., and Lantz, R. J., J. Pharm. Sci., Vol. 53, No. 6, 1964, p. 670.

    Article  Google Scholar 

  89. Willauer, H. D., Mushrush, G. W., and Williams, F. W., Critical Evaluation of Rotary Atomizer, Petrol. Sci. Technol., Vol. 24, 2006, pp. 1215–1232.

    Article  Google Scholar 

  90. Hinze, J. O., and Milborn, H., Atomization of Liquids by Means of a Rotating Cup, ASME J. Appl. Mech., Vol. 17, No. 2, 1950, pp. 145–153.

    Google Scholar 

  91. Tumanovski, A. G., Semichastnyi, N. N., and Akhrameev, V. I., Application of Air-Assisted Atomizers for Fuel Atomizers in Stationary Gas Turbines, Teploenergetika, No. 11, 1984 (in Russian).

    Google Scholar 

  92. Berger, H., Ultrasonic Liquid Atomization: Theory and Application, 2nd ed., Hyde Park: Partrige Hill, 2006.

    Google Scholar 

  93. Mochida, T., Ultrasonic Atomization of Liquids, Proceedings of the 1st International Conference on Liquid Atomization and Sprays, Tokyo, 1978, pp. 193–200.

    Google Scholar 

  94. Hansmann, S., Einfluss von Stoff- und Betriebsparametern auf die Zerstäubung hochviskoser Flüssigkeiten im Ultraschall-Stehwellenfeld, Disseration, Universität Bremen, 1996.

    Google Scholar 

  95. Bauckhage, K., Andersen, O., Hansmann, S., Reich, W., and Schreckenberg, P., Production of Fine Powders by Ultrasonic Standing Wave Atomization, Powder Technol., Vol. 86, No. 1, 1996, pp. 77–86.

    Article  Google Scholar 

  96. Lang, R. S. J., Ultrasonic Atomization of Liquids, J. Acoust. Soc. Am., Vol. 34, No. 1, 1962, pp. 6–8.

    Article  Google Scholar 

  97. Peskin, R. L., and Raco, R. J., Ultrasonic Atomization of Liquids, J. Acoust. Soc. Am., Vol. 25, No. 9, September 1963, pp. 1378–1381.

    Article  Google Scholar 

  98. Dobre, M., and Bolle, L., Practical Design of Ultrasonic Spray Devices: Experimental Testing of Several Atomizer Geometries, Exp. Thermal Fluid Sci., Vol. 26, No. 2–4, June 2002, pp. 205–211.

    Article  Google Scholar 

  99. Graf, P. E., Breakup of Small Liquid Volume by Electrical Charging, Proceedings of API Research Conference on Distillate Fuel Combustion, API Publication 1701, Paper CP62-4, 1962.

    Google Scholar 

  100. Nasr, Y., and Bendig, L., Industrial Sprays and Atomization, Springer, London, 2002.

    Google Scholar 

  101. El-Shanawany, M. S. M. R., and Lefebvre, A. H., Airblast Atomization: The Effect of Linear Scale on Mean Drop Size, J. Energy, Vol. 4, No. 4, 1980, pp. 184–189.

    Article  Google Scholar 

  102. Jasuja, A. K., and Lefebvre, A. H., Influence of Ambient Pressure on Drop Size and Velocity Distributions in Dense Sprays. Twenty-Fifth Symposium (International) on Combustion, The Combustion Institute, Pittsburg, pp. 345–352.

    Google Scholar 

  103. Fraser, R. P., Eisenklam, P., and Dombrowski, N., Liqued Atomitation in Chemical Engineering. Br. Chem. Eng., Vol. 2, No. 9, 1957, pp. 414–417, 491–501, 536–543, 610–613.

    Google Scholar 

  104. Valeev, R. S., Kudryavtstev, A. V., and Kuntsev, G. M., Experimental Investigation of Atomization of a Liquid Jet Fed Perpendicularly to the Gas Jet, Izv. Vyssh. Uchebn. Zaved. “Aviatsionnoya Tetkhnika,” No. 3, 1984 (in Russian). pp. 87–88.

    Google Scholar 

  105. Baik, S., Blanchard, J. P., and Carradini, M. L., Development of Micro-Diesel Injector Nozzles via Microelectromehcanical Systems Technology and Effects on Spray Characteristics, J. Eng. Gas Turbines Power, vol. 125, April 2003, pp. 427–434.

    Article  Google Scholar 

  106. Panasenkov, N. J., Zh. Tekh. Fiz., Vol. 21, 1951, p. 160.

    Google Scholar 

  107. Mori, Y., Hijikata, K., and Nagasaki, T., Electrostatic Atomization for Small Droplets of Uniform Diameter, Trans. Jpn. Soc. Mech. Eng. Ser. B, 1981, Vol. 47, pp. 1881–1890.

    Google Scholar 

  108. Bandyopadhyay, A., and Biswas, M. N., Spray Scrubbing of Particulates with a Critical Flow Atomizer, Chem. Eng. Technol., Vol. 30, No. 12, 2007, pp. 1674–1685.

    Article  Google Scholar 

  109. Dickerson, R., Tate, K., and Barsic, N., Correlation of Spray Injector Parameters with Rocket Engine Performance, Technical Report AFRPL-TR-68-147, Rocketdyne Division of North American Rockwell Corporation, Canoga Park, Calif., June, 1968.

    Google Scholar 

  110. Zajac. L., Correlation of Spray Drop size Distribution and Injector Variables, Rocketdyne Report R-8455, Contract NAS7-726, February 1971.

    Google Scholar 

  111. Nonnenmacher, S., and Piesche, M., Design of Hollow Cone Pressure Swirl Nozzles to Atomize Newtonian Fluids, Chemical Engineering Science, Vol. 55, 2000, pp. 4339–4348.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Omer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer US

About this chapter

Cite this chapter

Omer, K., Ashgriz, N. (2011). Spray Nozzles. In: Ashgriz, N. (eds) Handbook of Atomization and Sprays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7264-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7264-4_24

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7263-7

  • Online ISBN: 978-1-4419-7264-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics