Continuum-Based Methods for Sprays

  • F. X. TannerEmail author


In this chapter, the mathematical description of spray processes is presented. After a brief summary of the basic mathematical concepts used, a discussion of the conservation equations is given, followed by a brief introduction to turbulence. Subsequently, a discussion of turbulence modeling is presented including Reynolds-averaged Navier–Stokes (RANS) and large eddy simulation (LES) modeling. Once this basic background is established, the discussion of the averaged or filtered conservation equations in conjunction with the liquid phase equations is given. The chapter ends with a discussion of the discretization of the equation system and the main algorithms used for the numerical solutions.


Atomization Chemical reactions Conservation equations Constitutive equations Drop breakup Drop deformation Drop collisions Evaporation LES Newtonian fluids RANS Spray modeling Spray PDF Stochastic discrete particle method Source terms Turbulence 


  1. 1.
    J. Abraham, F. V. Bracco, and R. D. Reitz. Comparisons of computed and measured premixed charge engine combustion. Combustion and Flame, 60:309–322, 1985.CrossRefGoogle Scholar
  2. 2.
    A. A. Amsden. KIVA–3V: a block–structured KIVA program for engines with vertical or canted valves. Technical Report LA-13313-MS, Los Alamos National Laboratory, Los Alamos July 1997.CrossRefGoogle Scholar
  3. 3.
    A. A. Amsden, T. D. Butler, P. J. O’Rourke, and J. D. Ramshaw. KIVA – a comprehensive model for 2-D and 3-D engine simulations. SAE Paper 850554, 1985.Google Scholar
  4. 4.
    A. A. Amsden, P. J. O’Rourke, and T. D. Butler. KIVA II: A computer program for chemically reactive flows with sprays. Technical Report LA-11560-MS, Los Alamos National Laboratory, Los Alamos, May 1989.Google Scholar
  5. 5.
    M. Astarita, F. E. Corcione, M. Costa, A. De Maio, and B. M. Vaglieco. Application of the shell ignition model and comparison with spectroscopic measurements of a high swirl diesel combustion. In Proceedings of the ASME Fall Technical Conference, ICE–vol. 33-3, pp. 27–34, October 1999.Google Scholar
  6. 6.
    I. E. Barton. Comparison of SIMPLE- and PISO-type algorithms for transient flows. International Journal for Numerical Methods in Fluids, 26:459–483, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. Borghi. Chemical reactions calculations in turbulent flows: Application to a co-containing turbojet plume. Advances in Geophysics, 18(pt II):349–365, 1974.Google Scholar
  8. 8.
    K. N. C. Bray and J. B. Moss. A unified statistical model of the premixed turbulent flame. Acta Astronautica, 4:291–319, 1977.CrossRefGoogle Scholar
  9. 9.
    C. Chevalier, P. Loussard, U. C. Müller, and J. Warnatz. A detailed low-temperature reaction mechanism of n-heptane auto-ignition. In Second International Symposium, COMODIA, pp. 93–97, Kyoto, Japan, 1990.Google Scholar
  10. 10.
    C. Chryssakis and D. Assanis. A unified fuel spray breakup model for internal combustion engine applications. Atomization and Sprays, 18(5):375–426, 2008.CrossRefGoogle Scholar
  11. 11.
    T. J. Chung. Computational Fluid Dynamics. Cambridge University Press, Cambridge, 2002.zbMATHCrossRefGoogle Scholar
  12. 12.
    J. W. Deardorff. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics, 41:453–480, 1970.zbMATHCrossRefGoogle Scholar
  13. 13.
    M. Elsden, E. Gutheil, M. Nehse, and J. Warnatz. Auto-ignition modeling in diesel engines. In Proceedings of the Third International ICE Conference, Capri, September 1997.Google Scholar
  14. 14.
    J. H. Ferziger. Large eddy numerical simulations of turbulent flows. AIAA Paper 76–347, San Diego, 1976.Google Scholar
  15. 15.
    M. Frenklach, H. Wang, and M. J. Rabinowitz. Optimization and analysis of large chemical kinetics mechanisms using the solution mapping method – combustion of methane. Progress in Energy and Combustion Science, 18:47–73, 1992.CrossRefGoogle Scholar
  16. 16.
    N. Frössling. Über die Verdunstung fallender Tropfen. Gerlands Beiträge zur Geophysik, 52:170–216, 1938.Google Scholar
  17. 17.
    M. Germano, U. Piomelli, P. Moin, and W. Cabot. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids, 3:1760–1765, 1991.zbMATHCrossRefGoogle Scholar
  18. 18.
    I. Glassman. Combustion, 2nd edn. Academic, Orlando, 1987.Google Scholar
  19. 19.
    A. D. Gosman, F. C. Lockwood, and A. P. Salooja. The prediction of cylindrical furnaces gaseous fueled with premixed and diffusion burners. In Seventeenth Symposium (International) on Combustion, pp. 747–760, The Combustion Institute, Pittsburgh, 1979.Google Scholar
  20. 20.
    M. Halstead, L. Kirsh, and C. Quinn. The autoignition of hydrocarbon fuels at high temperatures and pressures – fitting of a mathematical model. Combustion and Flame, 30:45–60, 1977.CrossRefGoogle Scholar
  21. 21.
    F. H. Harlow and P. I. Nakayama. Transport of turbulence energy decay rate. Technical Report LA-3854, Los Alamos National Laboratory, Los Alamos, 1968.Google Scholar
  22. 22.
    C. W. Hirt, A. A. Amsden, and J. L. Cook. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics, 14:227–253, 1974.zbMATHCrossRefGoogle Scholar
  23. 23.
    S. S. Hwang, Z. Liu, and R. D. Reitz. Breakup mechanisms and drag coefficients of high-speed vaporizing liquid drops. Atomization and Sprays, 6:353–376, 1996.Google Scholar
  24. 24.
    R. J. Issa. Solution of implicitly discretized fluid flow equations by operator-splitting. Journal of Computational Physics, 62:40–65, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    R. J. Issa, A. D. Gosman, and A. P. Watkins. The computation of compressible and incompressible recirculating flows by a non-iterative scheme. Journal of Computational Physics, 62:66–82, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    W. P. Jones and B. E. Launder. The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat Mass Transfer, 15:301–314, 1972.CrossRefGoogle Scholar
  27. 27.
    S.-C. Kong, Z. Han, and R. D. Reitz. The development and application of a diesel ignition and combustion model for multidimensional engine simulation. SAE Paper 950278, 1995.Google Scholar
  28. 28.
    S.-C. Kong and R. D. Reitz. Multidimensional modeling of diesel ignition and combustion using a multistep kinetics model. Journal of Engineering for Gas Turbines and Power, 115:781–789, 1993.CrossRefGoogle Scholar
  29. 29.
    B. E. Launder and D. B. Spalding. Lectures in Mathematical Models of Turbulence. Academic, London, 1972.zbMATHGoogle Scholar
  30. 30.
    B. E. Launder and B. I. Sharma. Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disk. Letters in Heat and Mass Transfer, 1(2):131–138, 1974.CrossRefGoogle Scholar
  31. 31.
    B. E. Launder and D. B. Spalding. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3:269–89, 1974.zbMATHCrossRefGoogle Scholar
  32. 32.
    B. F. Magnussen and B. H. Hjertager. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. In Sixteenth Symposium (International) on Combustion, pp. 719–729, The Combustion Institute, Pittsburgh, 1976.Google Scholar
  33. 33.
    U. C. Müller. Reduzierte Reaktionsmechanismen für die Zündung von n–Heptan und ISO–Oktan unter motorrelevanten Bedingungen. PhD thesis, RWTH, Aachen, 1993.Google Scholar
  34. 34.
    S. Ohe. Vapor-Liquid Equilibrium at High Pressure, 1st edn. Elsevier, New York, 1990.Google Scholar
  35. 35.
    OpenFOAM. The open source CFD toolbox. OpenCFD Ltd.,, 2004–2008.
  36. 36.
    P. J. O’Rourke. Collective Drop Effects in Vaporizing Sprays. PhD thesis, Princeton University, 1981. PhD thesis 1532-T.Google Scholar
  37. 37.
    P. J. O’Rourke and A. A. Amsden. The TAB method for numerical calculation of spray droplet breakup. SAE Paper, 872089, 1987.Google Scholar
  38. 38.
    S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere, New York, 1980.zbMATHGoogle Scholar
  39. 39.
    S. V. Patankar and D. B. Spalding. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15:1787–1806, 1972.zbMATHCrossRefGoogle Scholar
  40. 40.
    M. A. Patterson and R. D. Reitz. Modeling the effects of fuel spray characteristics on diesel engine combustion and emission. SAE Paper 980131, 1998.Google Scholar
  41. 41.
    S. B. Pope. Turbulent Flows, 2nd edn. Cambridge University Press, New York, 2000.zbMATHGoogle Scholar
  42. 42.
    S. L. Post and J. Abraham. Modeling the outcome of drop-drop collisions in diesel sprays. International Journal of Multiphase Flow, 28:997–1019, 2002.zbMATHCrossRefGoogle Scholar
  43. 43.
    L. Prandtl. Bericht über Untersuchungen zur ausgebildeten Turbulenz. Zeitschrift für angewandte Mathematik und Mechanik (ZAMM), 5(2):136–139, 1925.zbMATHGoogle Scholar
  44. 44.
    L. Prandtl. Über ein neues Formelsystem für die ausgebildete Turbulenz. In Nachrichten der Akademischen Wissenschaften, Math.-Phys. Klasse, pp. 6–19, Göttingen, Deutschland, 1945.Google Scholar
  45. 45.
    W. E. Ranz and W. R. Marshall. Evaporation from drops (parts I and II). Chemical Engineering Progress, 48:141–146, 173–180, 1952.Google Scholar
  46. 46.
    R. D. Reitz. Modeling atomization processes in high-pressure vaporizing sprays. Atomization and Spray Technology, 3:309–337, 1987.Google Scholar
  47. 47.
    J. C. Rotta. Statistische Theory nichthomogener Turbulenz. Zeitschrift für Physik, 129:547–572, 1951.zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    D. P. Schmidt and C. J. Rutland. A new droplet collision algorithm. Journal of Computational Physics, 164:62–80, 2000.zbMATHCrossRefGoogle Scholar
  49. 49.
    U. Schumann. Realizability of Reynolds-stress turbulence models. Physics of Fluids, 20:721–725, 1977.zbMATHCrossRefGoogle Scholar
  50. 50.
    S. Shaanan, J. H. Ferziger, and W. C. Reynolds. Numerical simulation of turbulence in the presence of shear. Department of Mechanical Engineering Technical Report No. TF-6, Stanford University, Stanford, 1975.Google Scholar
  51. 51.
    J. Smagorinsky. General circulation experiments with the primitive equations, part I: the basic experiment. Monthly Weather Review, 91:99–164, 1963.CrossRefGoogle Scholar
  52. 52.
    D. B. Spalding. In Thirteenth Symposium (International) on Combustion, pp. 649–657, The Combustion Institute, Pittsburgh, 1971.Google Scholar
  53. 53.
    F. X. Tanner. Validation of an auto-ignition model based on a transport equation of a characteristic ignition progress variable. In Proceedings of the 15th ILASS-Americas Annual Conference, pp. 98–102, Madison, May 2002.Google Scholar
  54. 54.
    F. X. Tanner. Development and validation of a cascade atomization and drop breakup model for high-velocity dense sprays. Atomization and Sprays, 14(3):211–242, 2004.CrossRefMathSciNetGoogle Scholar
  55. 55.
    F. X. Tanner and S. Srinivasan. Optimization of an asynchronous fuel injection system in diesel engines by means of a micro-genetic algorithm and an adaptive gradient method. SAE Paper 2008-01-0925, 2008.Google Scholar
  56. 56.
    G. I. Taylor. The shape and acceleration of a drop in a high speed air stream. In G. K. Batchelor, editor, The Scientific Papers of Sir Geoffrey Ingram Taylor, vol. 3, pp. 457–464. Cambridge University Press, New York, 1963.Google Scholar
  57. 57.
    J. Warnatz, U. Maas, and R. W. Dibble. Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 3rd edn., Springer-Verlag, Berlin, 2001.zbMATHGoogle Scholar
  58. 58.
    G. Weisser. Modelling of combustion and nitric oxide formation for medium-speed DI diesel engines: Zero and three-dimensional approaches. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, 2001. Diss. ETH Nr. 14465.Google Scholar
  59. 59.
    G. Weisser, F. X. Tanner, and K. Boulouchos. Modeling of ignition and early flame development with respect to large diesel engine simulation. SAE Transactions: Journal of Fuels and Lubricants, 107(4):802–811, 1999.Google Scholar
  60. 60.
    C. K. Westbrook and F. L. Dryer. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combustion Science and Technology, 27:31–45, 1981.CrossRefGoogle Scholar
  61. 61.
    D. C. Wilcox. Turbulence Modeling for CFD, 2nd edn. DCW Industries, La Canada, 1993.Google Scholar
  62. 62.
    F. A. Williams. Spray combustion and atomization. Physics of Fluids, 1(6):541–545, 1958.zbMATHCrossRefGoogle Scholar
  63. 63.
    S. L. Yang, B. D. Peschke, and K. Hanjalic. Second-moment closure model for IC engine flow simulation using KIVA code. Journal Engineering for Gas Turbines and Power, 122:355–363, 2000.CrossRefGoogle Scholar
  64. 64.
    Y. B. Zeldovich. The oxidation of nitrogen in combustion and explosions. Acta Physicochimica, USSR, 21:577–628, 1946.Google Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.Department of Mathematical SciencesMichigan Technological UniversityHoughtonUSA

Personalised recommendations