Advertisement

Modeling Atomization Using Boundary Element Methods (BEM)

  • S. S. YoonEmail author
  • S. D. Heister
Chapter
  • 6k Downloads

Abstract

This chapter reviews atomization modeling works that utilize boundary element methods (BEMs) to compute the transient surface evolution in capillary flows. The BEM, or boundary integral method, represents a class of schemes that incorporate a mesh that is only located on the boundaries of the domain and hence are attractive for free surface problems. Because both primary and secondary atomization phenomena are considered in many free surface problems, BEM is suitable to describe their physical processes and fundamental instabilities. Basic formulations of the BEM are outlined and their application to both low- and high-speed plain jets is presented. Other applications include the aerodynamic breakup of a drop, the pinch-off of an electrified jet, and the breakup of a drop colliding into a wall.

Keywords

Bond number Boundary element method Drop impact Electrified jet Liquid jet Pinch-off Primary and secondary atomization 

References

  1. 1.
    Heister, S. D.: Boundary element methods for two-fluid free surface flows, Eng. Anal. Boundary Elements 19, 309–317 (1997).CrossRefGoogle Scholar
  2. 2.
    Yoon, S. S., S. D. Heister: Analytic solution for fluxes at interior points for the 2D laplace equation, Eng. Anal. Boundary Elements 24, 155–160 (2000).zbMATHCrossRefGoogle Scholar
  3. 3.
    Yoon, S. S., S. D. Heister, J. T. Epperson, P. E. Sojka: Modeling multi-jet mode electrostatic atomization using boundary element methods, J. Electrostat. 50, 91–108 (2001).CrossRefGoogle Scholar
  4. 4.
    Gorokhovski, M., M. Herrmann: Modeling primary atomization, Ann. Rev. Fluid Mech. 40, 343–366 (2008).CrossRefMathSciNetGoogle Scholar
  5. 5.
    Lebas, R., T. Menard, P. A. Beau, A. Berlemont, F. X. Demoulin: Numerical simulation of primary break-up and atomization: DNS and modeling study, Int. J. Multiphase Flow 35, 247–260 (2009).CrossRefGoogle Scholar
  6. 6.
    Hung, R. J., C. C. Lees: Effect of a baffle on slosh waves excited by gravity-gradient acceleration in microgravity, Z Spacecraft Rockets 31, 1107–1114 (1994).CrossRefGoogle Scholar
  7. 7.
    Class Project, A and AE 630, Stability of Free Surfaces, Purdue University School of Aeronautics and Astronautics, Professor Heister, 1994.Google Scholar
  8. 8.
    Foote, G. B.: A numerical method for studying drop behavior: simple oscillation, J. Comput. Phys. 11, 507–530 (1973).CrossRefGoogle Scholar
  9. 9.
    Dold, J. W., D. H. Peregrine: Steep unsteady water waves, an efficient computational scheme. In Proceedings of the 19th Coastal Engineering Conference 1, Houston, ASCE (1984).Google Scholar
  10. 10.
    Ligguet, J. A., P. L. F. Liu: The boundary integral equation method for porous media flow, Allen & Unwin, London (1983).Google Scholar
  11. 11.
    Longuet-Higgins, M. S., E. D. Cokelet: The deformation of steep surfaces waves on water. I. A numerical method of computation, Proc. R. Soc. Lond. A 350, 1–26 (1976).zbMATHMathSciNetGoogle Scholar
  12. 12.
    Lundgren, T. S., N. N. Mansour: Oscillations of drops in zero gravity with weak viscous effects, J. Fluid Mech. 194, 479–510 (1988).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hilbing, J. H., S. D. Heister, C. A. Spangler: Boundary element method for atomization of a finite liquid jet, Atomization Sprays 5, 621–638 (1995).Google Scholar
  14. 14.
    Kelmanson, M. A.: Boundary integral equation solution of viscous flows with free surfaces, J. Eng. Math. 17, 329–343 (1983).zbMATHCrossRefGoogle Scholar
  15. 15.
    Tjahjadi, M., H. A. Stone, J. M. Ottino: Satellite and subsatellite formation in capillary breakup, J. Fluid Mech. 243, 297–317 (1992).CrossRefGoogle Scholar
  16. 16.
    Newhouse, L. A., C. Pozrikidis: The capillary instability of annular layers and liquid threads, J. Fluid Mech. 242, 193–209 (1992).CrossRefGoogle Scholar
  17. 17.
    Nakayama, T., K. Washizu: The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems, Int. J. Numer. Methods, Eng. 17, 1631–1646 (1982).CrossRefGoogle Scholar
  18. 18.
    Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability, Dover, New York (1981).Google Scholar
  19. 19.
    Pozrikidis, C.: Boundary integral and singularity methods for linearized viscous flow, Cambridge University Press, New York (1992).zbMATHCrossRefGoogle Scholar
  20. 20.
    Reitz, R. D., F. V. Bracco: Mechanism of atomization of a liquid jet, Phys. Fluids 25, 1730–1742 (1982).zbMATHCrossRefGoogle Scholar
  21. 21.
    Yoon, S. S., S. D. Heister: A nonlinear atomization model based on a boundary layer instability mechanism, Phys. Fluids 16, 47–61 (2004).CrossRefMathSciNetGoogle Scholar
  22. 22.
    Yoon, S. S.: Droplet distributions at the liquid core of a turbulent spray, Phys. Fluids, 035103 (2005).Google Scholar
  23. 23.
    Park, H., S. S. Yoon, S. D. Heister: A nonlinear atomization model for computation of drop-size distributions and complete spray simulation, Int. J. Numer. Methods Fluids, 48, 1219–1240 (2005).zbMATHCrossRefGoogle Scholar
  24. 24.
    Park, H., S. D. Heister: Nonlinear simulation of free surfaces and atomization in pressure swirl atomizers, Phys. Fluids 18, 052103 (2006).Google Scholar
  25. 25.
    Duft, D., T. Achtzehn, R. Muller, B. A. Huber, T. Leisner: Rayleigh jets from levitated microdroplets, Nature 42, 128 (2003).CrossRefGoogle Scholar
  26. 26.
    Rayleigh, L.: On the equilibrium of liquid conducting masses charged with electricity, Philos. Mag. 14, 184–186 (1882).Google Scholar
  27. 27.
    Reznik, S. N., A. L. Yarin, A. Theron, E. Zussman: Transient and steady shapes of droplets attached to a surface in a strong electric field, J. Fluid Mech. 516, 349–377 (2004).zbMATHCrossRefGoogle Scholar
  28. 28.
    Blake, J. R., D. C. Gibson: Cavitation bubbles near boundaries, Ann. Rev. Fluid Mech. 19, 99–123 (1987).CrossRefGoogle Scholar
  29. 29.
    Sato, K., Y. Tomita, A. Shima: Numerical analysis of a gas bubble near a rigid boundary in an oscillatory pressure field, J. Acoust. Soc. Am. 95, 2416–2424 (1994).CrossRefGoogle Scholar
  30. 30.
    Wang, Q. X., K. S. Yeo, B. C. Khoo, K. Y. Lam: Nonlinear interaction between gas bubble and free surface, Comput. Fluids 25, 607–628 (1996).zbMATHCrossRefGoogle Scholar
  31. 31.
    Yuan, H., A. Prosperetti: Gas-liquid heat transfer in a bubble collapsing near a wall, Phys. Fluids 9, 127–142 (1997).CrossRefGoogle Scholar
  32. 32.
    Blake, J. R., M. C. Hooton, P. B. Robinson, R. P. Tong: Collapsing cavities, toroidal bubbles, and jet impact, Philos. Trans. R. Soc. Lond. A 355, 537–550 (1997).zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Tong, R. P.: A new approach to modelling an unsteady free surface in boundary integral methods with applications to bubble-structure interactions, Math. Comput. Simul. 44, 415–426 (1997).zbMATHCrossRefGoogle Scholar
  34. 34.
    Tong, R. P., W. P. Schiffers, S. J. Shaw, J. R. Blake, D. C. Emmony: The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary, J. Fluid Mech. 380, 339–361 (1999).zbMATHCrossRefGoogle Scholar
  35. 35.
    Zhang, Y. L., K. S. Yeo, B. C. Khoo, W. K. Chong: Simulation of three-dimensional bubles using desingularized boundary integral method, Int. J. Num. Methods Fluids 31, 1311–1320 (1999).zbMATHCrossRefGoogle Scholar
  36. 36.
    Tomita, Y., P. B. Robinson, R. P. Tong, J. R. Blake: Growth and collapse of cavitation bubbles near a curved rigid boundary, J. Fluid Mech. 466, 259–283 (2002).zbMATHCrossRefGoogle Scholar
  37. 37.
    Yasuda, A., H. Takahira, Numerical analysis of the dynamics of toroidal bubbles considering the heat transfer of internal gas, JSME Int. J. Ser. B 46, 600–609 (2003).Google Scholar
  38. 38.
    Xiao, Z., R. B. H. Tan: An improved model for bubble formation using the boundary integral method, Chem. Eng. Sci. 60, 179–186 (2005).CrossRefGoogle Scholar
  39. 39.
    Makuta, T., F. Takemura: Simulation of micro gas bubble generation of uniform diameter in an ultrasonic field by a boundary element method, Phys. Fluids 18, 108102 (2006).Google Scholar
  40. 40.
    Tsiglifis, K., N. A. Pelekasis: Nonlinear oscillations and collapse of elongated bubbles subject to weak viscous effects: effect of internal overpressure, Phys. Fluids 19, 072106 (2007).Google Scholar
  41. 41.
    Obreschkow, D., P. Kobel, N. Dorsaz, A. Bosset, C. Nicollier, M. Farhat: Cavitation bubble dynamics inside liquid drops in microgravity, Phys. Rev. Lett. 97, 094502 (2006).Google Scholar
  42. 42.
    Yarin, A. L., D. A. Weiss: Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity, J. Fluid Mech. 283, 141–173 (1995).CrossRefGoogle Scholar
  43. 43.
    Weiss, D. A., A. L. Yarin: Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation, J. Fluid Mech. 385, 229–254 (1999).zbMATHCrossRefGoogle Scholar
  44. 44.
    Davidson, M. R.: Boundary integral prediction of the spreading of an inviscid drop impacting on a solid surface, Chem. Eng. Sci. 55, 1159–1170 (2000).CrossRefGoogle Scholar
  45. 45.
    Davidson, M. R.: Spreading of an inviscid drop impacting on a liquid film, Chem. Eng. Sci. 57, 3639–3647 (2002).CrossRefGoogle Scholar
  46. 46.
    Park, H. B., S. S. Yoon, R. A. Jepsen, S. D. Heister, H. Y. Kim: Droplet bounce simulations and air pressure effects on the deformation of pre-impact droplets using a boundary element method, Eng. Anal. Boundary Elements 32, 21–31 (2008).CrossRefGoogle Scholar
  47. 47.
    Abramozwitz, M., F. A. Stegun (eds.): Handbook of mathematical functions, 9th edn., Dover, New York (1970).Google Scholar
  48. 48.
    Chao, C. C.: Boundary element modeling of 2d and 3d atomization, Ph.D. thesis, Purdue University (1999).Google Scholar
  49. 49.
    Rutz, M. W.: Boundary element model for the semi-infinite liquid jet, Masters thesis, Purdue University (1995).Google Scholar
  50. 50.
    Smirnov, V. I.: A course of higher mathematics, Volume II, Pergamon, New York (1964).Google Scholar
  51. 51.
    Mansour, N. N., T. S. Lundgren: Satellite formation in capillary jet break-up, Phys. Fluids A 2, 1141–1144 (1990).CrossRefGoogle Scholar
  52. 52.
    Rayleigh, W. S.: On the instability of jets, Proc. Lond. Math. Soc. 10(4), 4–73 (1878).CrossRefGoogle Scholar
  53. 53.
    Hilbing, J. H., S. D. Heister: Droplet size control in liquid jet breakup, Phys. Fluids 8, 1574–1580 (1996).zbMATHCrossRefGoogle Scholar
  54. 54.
    Lafrance, P.: Nonlinear breakup of a laminar liquid jet, Phys. Fluids 18, 428–432 (1975).zbMATHCrossRefGoogle Scholar
  55. 55.
    Rutland, D. F., G. J. Jameson: Theoretical prediction of the sizes of drops formed in the breakup of capillary jets, Chem. Eng. Sci. 25, 1689–1698 (1970).CrossRefGoogle Scholar
  56. 56.
    Moses, M. P.: Visualization of liquid jet breakup and droplet formation, MS thesis, Purdue University (1995).Google Scholar
  57. 57.
    Park, H., S. S. Yoon, S. D. Heister: On the nonlinear stability of a swirling liquid jet, Int. J. Multiphase Flow 32, 1100–1109 (2006).zbMATHCrossRefGoogle Scholar
  58. 58.
    Ponstein, J.: Instability of rotating cylindrical jets, Appl. Sci. Res. 8, 425–456 (1962).CrossRefMathSciNetGoogle Scholar
  59. 59.
    Weber, C.: Zum zerfall eines flussigkeitsstrahles, Z. Angew. Math. Mech. 11, 138–145 (1931).Google Scholar
  60. 60.
    Levich, V. G.: Physicochemical hydrodynamics, Prentice Hall, New Jersey, 639–646 (1962).Google Scholar
  61. 61.
    Reitz, R. D., F. V. Bracco: Mechanism of atomization of a liquid jet, Phys. Fluids 25, 1730–1742 (1982).zbMATHCrossRefGoogle Scholar
  62. 62.
    Ibrahim, E. A.: Effect of swirl on jet atomization, AIAA J. 31, Technical notes (1993).Google Scholar
  63. 63.
    Spangler, C. A., J. H. Hilbing, S. D. Heister: Nonlinear modeling of jet atomization in the wind-induced regime, Phys. Fluids 7, 964–971 (1995).zbMATHCrossRefGoogle Scholar
  64. 64.
    Park, H., S. D. Heister: A numerical study of primary instability on viscous high-speed jets, Comput. Fluids 35, 1033–1045 (2006).zbMATHCrossRefGoogle Scholar
  65. 65.
    Hoyt, J. W., J. J. Taylor: Waves on water jets, J. Fluid Mech. 83, 119–127 (1977).CrossRefGoogle Scholar
  66. 66.
    Brennen, C.: Cavity surface wave patterns and general appearance, J. Fluid Mech. 44.Google Scholar
  67. 67.
    Bayvel, L., Z. Orzechowski: Liquid Atomization Taylor and Francis, Washington, DC (1993).Google Scholar
  68. 68.
    Murray, I. F., S. D. Heister: On a droplet’s response to acoustic excitation, Int. J. Multiphase Flow 25, 531–550 (1999).zbMATHCrossRefGoogle Scholar
  69. 69.
    Hsiang, L. P., G. M. Faeth: Near-limit drop deformation and secondary breakup, Int. J. Multiphase Flow 18, 635–652 (1992).zbMATHCrossRefGoogle Scholar
  70. 70.
    Setiawan, E. R., S. D. Heister: Nonlinear modeling of an infinite electrified jet, J Electrostat. 42, 243–257 (1997).CrossRefGoogle Scholar
  71. 71.
    Pelekasis, N. A., J. A. Tsamopoulos: Equilibrium shapes and stability of charged and conducting drops, Phys. Fluids A 2, 1328–1340 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  72. 72.
    Basaran, O. A., T. W. Patzek, R. E. Benner, L. E. Scriven: Nonlinear oscillations and breakup of conducting, inviscid drops in an externally applied electric field, Ind. Eng. Chem. Res. 34, 3454–3465 (1995).CrossRefGoogle Scholar
  73. 73.
    Feng, Z. C., L. G. Leal: Numerical simulation of the dynamics of an electrostatically levitated drop, Int. J. Multiphase Flow 22, 93–120 (1996).zbMATHCrossRefGoogle Scholar
  74. 74.
    Feng, Z. C.: Instability caused by the coupling between non-resonant shape oscillation modes of a charged conducting drop, J. Fluid Mech. 333, 1–21 (1997).zbMATHCrossRefGoogle Scholar
  75. 75.
    Feng, Z. C., Y. H. Su: Numerical simulations of the translational and shape oscillations of a liquid drop in an acoustic field, Phys. Fluids 9, 519–529 (1997).CrossRefGoogle Scholar
  76. 76.
    Lopez-Herrera, J. M., A. M. Ganan-Calvo, M. Perez-Saborid: One-dimensional simulation of the breakup of capillary jets of conducting liquids. Application to EHD spraying, J. Aerosol Sci. 30, 895–912 (1999).CrossRefGoogle Scholar
  77. 77.
    Lopez-Herrera, J. M., A. M. Ganan-Calvo: A note on charged capillary jet breakup of conducting liquids: experimental validation of a viscous one-dimensional model, J. Fluid Mech. 501, 303–326 (2004).zbMATHCrossRefGoogle Scholar
  78. 78.
    Betelu, S. I., M. A. Fontelos, U. Kindelan, O. Vantzos: Singularities on charged viscous droplets, Phys. Fluids 18, 051706 (2006).Google Scholar
  79. 79.
    Taylor, G. I.: Disintegration of water drops in an electric field, Proc. R. Soc. Lond., Ser. A 280, 383 (1964).zbMATHCrossRefGoogle Scholar
  80. 80.
    Cloupeau, M., B. Prunet-Foch: Electrostatic spraying in cone-jet mode, J. Electrostat. 22, 135–159 (1989).CrossRefGoogle Scholar
  81. 81.
    Kelly, A. J.: On the statistical quantum and practical mechanics of electrostatic atomization, J. Aerosol Sci. 25, 1159–1177 (1994).CrossRefGoogle Scholar
  82. 82.
    Duby, M. H., W. Deng, K. Kim, T. Gomez, A. Gomez: Stabilization of monodisperse electrosprays in the multi-jet mode via electric field enhancement, J. Aerosal Sci. 37, 306–322 (2006).CrossRefGoogle Scholar
  83. 83.
    Xu, L., W. W. Zhang, S. R. Nagel: Drop splashing on a dry smooth surface, Phys. Rev. Lett. 94, 184505 (2005).Google Scholar
  84. 84.
    Bang, B. H., Yoon, S. S., Kim, H. Y., Heister, S. D., James, S. C.: Assessment of gas and liquid velocities induced by an impacting liquid drop, Int. J. Multiphase Flow 37, in press (2011)Google Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.School of Mechanical EngineeringKorea UniversitySeoulSouth Korea

Personalised recommendations