Numerical Techniques for Simulating the Atomization Process

  • N. AshgrizEmail author


This chapter provides an overview of the techniques available to deal with flows having liquid-gas interfaces. These techniques are categorized based on the type of flow modeling (Eulerian, Lagrangian, or mixed), type of interface modeling (capturing or tracking), flow–interface coupling (integrated or segregated), and the type of spatial discretization (meshless, finite difference, finite volume, finite element [FE], or others).


Finite element Finite volume Finite difference Volume of fluid Level set Interface tracking Free surface flows Fixed mesh Boundary-fitted coordinates Boundary integral Marker and cell Immersed boundary Volume tracking Surface tracking Surface capturing Interfacial flow modeling 


  1. 1.
    Fukai J, Zhao Z, Poulikakos D, Megaridis CM, Miyatake O (1993) Modeling of the deformation of a liquid droplet impinging on a flat surface. Physics of Fluids A 5(11):2588–2599zbMATHCrossRefGoogle Scholar
  2. 2.
    Raymond F, Rosant JM (2000) A numerical and experimental study of the terminal velocity and shape of bubbles in viscous liquids. Chemical Engineering Science 55:943–955CrossRefGoogle Scholar
  3. 3.
    Pozrikidis C (1992) Boundary-integral and singularity methods for linearized viscous flow. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  4. 4.
    Veldman AEP (1979) Liquid sloshing under low-g conditions: mathematical model and basic numerical method. NLR Report TR 79057 U, National Aerospace Laboratory, The NetherlandsGoogle Scholar
  5. 5.
    Harlow FH, Welsh JE (1965) Numerical calculation of time dependent viscous incompressible flow with a free surface. Physics of Fluids 8:2182–2189zbMATHCrossRefGoogle Scholar
  6. 6.
    Hirt CW, Nicholls BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39:201–225zbMATHCrossRefGoogle Scholar
  7. 7.
    Ashgriz N, Poo JY (1991) FLAIR: flux line-segment advection and interface reconstruction. Journal of Computational Physics 93(2):449–468zbMATHCrossRefGoogle Scholar
  8. 8.
    Osher S, Fedkiw RP (2001) Level set methods. Journal of Computational Physics 169:463–502zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Anderson DM, McFadden GB, Wheeler AA (1998) Diffuse-interface methods in fluid mechanics. Annual Review of Fluid Mechanics 30:139–165CrossRefMathSciNetGoogle Scholar
  10. 10.
    Glimm J, Grove JW, Li XL, Shyue KM, Zhang Q, Zeng Y (1998) Three-dimensional front tracking. SIAM Journal of Scientific Computing 19:703–727zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan YJ (2001) A front tracking method for the computations of multiphase flow. Journal of Computational Physics 169:708–759zbMATHCrossRefGoogle Scholar
  12. 12.
    Udaykumar HS, Mittal R, Shyy W (1999) Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids. Journal of Computational Physics 153:535–574zbMATHCrossRefGoogle Scholar
  13. 13.
    Francois M, Shyy W (2003) Computations of drop dynamics with the immersed boundary method, part 1: numerical algorithm and buoyancy-induced effect. Numerical Heat Transfer, Part B 44:101–118CrossRefGoogle Scholar
  14. 14.
    Lee L, Leveque RJ (2003) An immersed interface method for incompressible Navier-Stokes equations. SIAM Journal of Scientific Computing 25:832–856zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Zhao Y, Tan HH and Zhang B (2002) A high-resolution characteristics-based implicit dual time-stepping VOF method for free surface flow simulation on unstructured grids. Journal of Computational Physics 183:233–273zbMATHCrossRefGoogle Scholar
  16. 16.
    Kim MS, Lee W (2003) A new VOF-based numerical scheme for the simulation of fluid flow with free surface. Part I: new free surface-tracking algorithm and its verification. International Journal for Numerical Methods in Fluids 42:765–790zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Chen S, Johnson DB, Raad PE (1995) Velocity boundary conditions for the simulation of free surface fluid flow. Journal of Computational Physics 116:262–276zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Annual Review of Fluid Mechanics 31:567–603CrossRefMathSciNetGoogle Scholar
  19. 19.
    Kothe DB (1997) Perspective on Eulerian finite volume methods for incompressible interfacial flows. LANL Report LA-UR-97–3559, Los Alamos National Lab., Albuquerque, NMGoogle Scholar
  20. 20.
    Jafari A, Shirani E, Ashgriz N (2006) An improved three-dimensional model for pressure calculation in volume tracking methods. International Journal of Computational Fluid Dynamics 21(2):87–97CrossRefMathSciNetGoogle Scholar
  21. 21.
    Berthelsen PA (2002) A short introduction to the level set method and incompressible two-phase flow: a computational approach, NTNU Report, NorwayGoogle Scholar
  22. 22.
    Peskin CS (1977) Numerical analysis of blood flow in the heart. Journal of Computational Physics 25:220–252zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Li Z (1997) Immersed interface methods for moving interface problems. Numerical Algorithms 14:269–293zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Ye T, Shyy W, Chung JN (2001) A fixed-grid, sharp-interface method for bubble dynamics and phase change. Journal of Computational Physics 174:781–815zbMATHCrossRefGoogle Scholar
  25. 25.
    Consolini L, Aggarwal SK, Murad S (2003) A molecular dynamics simulation of droplet evaporation. International Journal of Heat and Mass Transfer 46:3179–3188zbMATHCrossRefGoogle Scholar
  26. 26.
    Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Clarendon Press, OxfordzbMATHGoogle Scholar
  27. 27.
    Inamuro T, Ogata T, Tajima S, Konishi N (2004) A lattice Boltzmann method for incompressible two-phase flows with large density differences. Journal of Computational Physics 198: 628–644zbMATHCrossRefGoogle Scholar
  28. 28.
    Jafari A, Ashgriz N (2005) Turbulence effects on the interface evolution for high velocity liquid jets, Invited paper. In International Symposium on Heat Mass Transfer Spray Systems, Antalya, Turkey, Jun. 5–10Google Scholar
  29. 29.
    Jafari A, Ashgriz N (2005) A new formulation of interface equation for volume tracking on arbitrary meshes. In 18th Annual Conference on Liquid Atomization and Spray Systems, Irvine, CA, May 22–25Google Scholar
  30. 30.
    Shinjo J, Umemura A (2010) Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation, Int. J. Multiphase Flow 36:513–532CrossRefGoogle Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations