Skip to main content

Numerical Techniques for Simulating the Atomization Process

  • Chapter
  • First Online:

Abstract

This chapter provides an overview of the techniques available to deal with flows having liquid-gas interfaces. These techniques are categorized based on the type of flow modeling (Eulerian, Lagrangian, or mixed), type of interface modeling (capturing or tracking), flow–interface coupling (integrated or segregated), and the type of spatial discretization (meshless, finite difference, finite volume, finite element [FE], or others).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fukai J, Zhao Z, Poulikakos D, Megaridis CM, Miyatake O (1993) Modeling of the deformation of a liquid droplet impinging on a flat surface. Physics of Fluids A 5(11):2588–2599

    Article  MATH  Google Scholar 

  2. Raymond F, Rosant JM (2000) A numerical and experimental study of the terminal velocity and shape of bubbles in viscous liquids. Chemical Engineering Science 55:943–955

    Article  Google Scholar 

  3. Pozrikidis C (1992) Boundary-integral and singularity methods for linearized viscous flow. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  4. Veldman AEP (1979) Liquid sloshing under low-g conditions: mathematical model and basic numerical method. NLR Report TR 79057 U, National Aerospace Laboratory, The Netherlands

    Google Scholar 

  5. Harlow FH, Welsh JE (1965) Numerical calculation of time dependent viscous incompressible flow with a free surface. Physics of Fluids 8:2182–2189

    Article  MATH  Google Scholar 

  6. Hirt CW, Nicholls BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39:201–225

    Article  MATH  Google Scholar 

  7. Ashgriz N, Poo JY (1991) FLAIR: flux line-segment advection and interface reconstruction. Journal of Computational Physics 93(2):449–468

    Article  MATH  Google Scholar 

  8. Osher S, Fedkiw RP (2001) Level set methods. Journal of Computational Physics 169:463–502

    Article  MATH  MathSciNet  Google Scholar 

  9. Anderson DM, McFadden GB, Wheeler AA (1998) Diffuse-interface methods in fluid mechanics. Annual Review of Fluid Mechanics 30:139–165

    Article  MathSciNet  Google Scholar 

  10. Glimm J, Grove JW, Li XL, Shyue KM, Zhang Q, Zeng Y (1998) Three-dimensional front tracking. SIAM Journal of Scientific Computing 19:703–727

    Article  MATH  MathSciNet  Google Scholar 

  11. Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan YJ (2001) A front tracking method for the computations of multiphase flow. Journal of Computational Physics 169:708–759

    Article  MATH  Google Scholar 

  12. Udaykumar HS, Mittal R, Shyy W (1999) Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids. Journal of Computational Physics 153:535–574

    Article  MATH  Google Scholar 

  13. Francois M, Shyy W (2003) Computations of drop dynamics with the immersed boundary method, part 1: numerical algorithm and buoyancy-induced effect. Numerical Heat Transfer, Part B 44:101–118

    Article  Google Scholar 

  14. Lee L, Leveque RJ (2003) An immersed interface method for incompressible Navier-Stokes equations. SIAM Journal of Scientific Computing 25:832–856

    Article  MATH  MathSciNet  Google Scholar 

  15. Zhao Y, Tan HH and Zhang B (2002) A high-resolution characteristics-based implicit dual time-stepping VOF method for free surface flow simulation on unstructured grids. Journal of Computational Physics 183:233–273

    Article  MATH  Google Scholar 

  16. Kim MS, Lee W (2003) A new VOF-based numerical scheme for the simulation of fluid flow with free surface. Part I: new free surface-tracking algorithm and its verification. International Journal for Numerical Methods in Fluids 42:765–790

    Article  MATH  MathSciNet  Google Scholar 

  17. Chen S, Johnson DB, Raad PE (1995) Velocity boundary conditions for the simulation of free surface fluid flow. Journal of Computational Physics 116:262–276

    Article  MATH  MathSciNet  Google Scholar 

  18. Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Annual Review of Fluid Mechanics 31:567–603

    Article  MathSciNet  Google Scholar 

  19. Kothe DB (1997) Perspective on Eulerian finite volume methods for incompressible interfacial flows. LANL Report LA-UR-97–3559, Los Alamos National Lab., Albuquerque, NM

    Google Scholar 

  20. Jafari A, Shirani E, Ashgriz N (2006) An improved three-dimensional model for pressure calculation in volume tracking methods. International Journal of Computational Fluid Dynamics 21(2):87–97

    Article  MathSciNet  Google Scholar 

  21. Berthelsen PA (2002) A short introduction to the level set method and incompressible two-phase flow: a computational approach, NTNU Report, Norway

    Google Scholar 

  22. Peskin CS (1977) Numerical analysis of blood flow in the heart. Journal of Computational Physics 25:220–252

    Article  MATH  MathSciNet  Google Scholar 

  23. Li Z (1997) Immersed interface methods for moving interface problems. Numerical Algorithms 14:269–293

    Article  MATH  MathSciNet  Google Scholar 

  24. Ye T, Shyy W, Chung JN (2001) A fixed-grid, sharp-interface method for bubble dynamics and phase change. Journal of Computational Physics 174:781–815

    Article  MATH  Google Scholar 

  25. Consolini L, Aggarwal SK, Murad S (2003) A molecular dynamics simulation of droplet evaporation. International Journal of Heat and Mass Transfer 46:3179–3188

    Article  MATH  Google Scholar 

  26. Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Clarendon Press, Oxford

    MATH  Google Scholar 

  27. Inamuro T, Ogata T, Tajima S, Konishi N (2004) A lattice Boltzmann method for incompressible two-phase flows with large density differences. Journal of Computational Physics 198: 628–644

    Article  MATH  Google Scholar 

  28. Jafari A, Ashgriz N (2005) Turbulence effects on the interface evolution for high velocity liquid jets, Invited paper. In International Symposium on Heat Mass Transfer Spray Systems, Antalya, Turkey, Jun. 5–10

    Google Scholar 

  29. Jafari A, Ashgriz N (2005) A new formulation of interface equation for volume tracking on arbitrary meshes. In 18th Annual Conference on Liquid Atomization and Spray Systems, Irvine, CA, May 22–25

    Google Scholar 

  30. Shinjo J, Umemura A (2010) Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation, Int. J. Multiphase Flow 36:513–532

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ashgriz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer US

About this chapter

Cite this chapter

Ashgriz, N. (2011). Numerical Techniques for Simulating the Atomization Process. In: Ashgriz, N. (eds) Handbook of Atomization and Sprays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7264-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7264-4_17

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7263-7

  • Online ISBN: 978-1-4419-7264-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics