Droplet Freezing and Solidification

  • F. X. TannerEmail author


Freezing and solidification processes are discussed and modeled for liquid droplets which undergo first-order phase transitions. First, a four-stage model is presented which accounts for supercooling, nucleation, recalescence, and crystallization. Subsequently, a more detailed discussion of a three-stage solidification model for droplets that do not exhibit supercooling is given. Aspects of the three-stage model validation are presented for a single cocoa butter drop and for a cocoa butter spray.


Cocoa butter Crystallization Freezing Latent heat Nucleation Nusselt number Ranz–Marshall correlation Recalescence Schmidt number Sherwood number Solidification Supercooling 


  1. 1.
    Alexiades, V. and A.D. Solomon. Mathematical modeling of melting and freezing processes. Hemisphere Publishing, Washington, 1993.Google Scholar
  2. 2.
    Amsden, A.A. KIVA–3: A KIVA program with block-structured mesh for complex geometries. Technical Report LA-12503-MS, Los Alamos National Laboratory, March 1993.Google Scholar
  3. 3.
    Constantino, H.R., L. Firouzabadian, K. Hogeland, Wu C., C. Beganski, K.G. Carrasquillo, M. Cordova, K. Griebenow, S.E. Zale, and M.A. Tracy. Protein spray freeze drying. Effect of atomization conditions on particle size and stability. Pharmaceutical Research, 17(11):1374–1383, 2000.CrossRefGoogle Scholar
  4. 4.
    Frössling, N. Über die Verdunstung fallender Tropfen. Gerlands Beiträge zur Geophysik, 52:170–216, 1938.Google Scholar
  5. 5.
    Gwie, C.G., R.J. Griffiths, D.T. Cooney, M.L. Johns, and D.I. Wilson. Microstructures formed by spray freezing of food fats. American Oil Chemists Society, 83:1053–1062, 2006.CrossRefGoogle Scholar
  6. 6.
    Hindmarsh, J.P., A.B. Russell, and X.D. Chen. Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet. International Journal of Heat and Mass Transfer, 46:1199–1213, 2003.CrossRefGoogle Scholar
  7. 7.
    Incropera, F.P. and D.P. DeWitt. Introduction to heat transfer, 4th edn. Wiley, New York, 2002.Google Scholar
  8. 8.
    Leach, W.T., D.T. Simpson, T.N Val, Z. Yu, K.T. Lim, E.J. Park, R.O. Williams III, and K.P. Johnston. Encapsulation of protein nanoparticles into uniform-sized microspheres formed in a spinning oil film. AAPS PharmSciTech, 6(4):605–617, 2005.CrossRefGoogle Scholar
  9. 9.
    Loisel, C., G. Keller, G. Lecq, C. Bourgaux, and Ollivon M. Phase transition and polymorphism of cocoa butter. American Oil Chemists Society, 75:425–439, 1998.CrossRefGoogle Scholar
  10. 10.
    Metin, S. and R.W. Hartel. Crystallization behavior of blends of cocoa butter and milk fat or milk fat fractions. Thermal Analysis, 47:1527–1544, 1996.CrossRefGoogle Scholar
  11. 11.
    Nguyen, X.C., J.D. Herberger, and P.A. Burke. Protein powders for encapsulation: a comparison of spray-freeze drying and spray drying of darbepoetin alfa. Pharmaceutical Research, 21(3):507–514, 2004.CrossRefGoogle Scholar
  12. 12.
    Ranz, W.E. and W.R. Marshall. Evaporation from drops (parts I and II). Chemical Engineering Program, 48:141–146, 173–180, 1952.Google Scholar
  13. 13.
    Srinivasan, S., F.X. Tanner, K.A. Feigl, T.O. Althaus, and E.J. Windhab. Development of a freezing model for food sprays. In Proceedings of the 8th World Congress of Chemical Engineering, Montreal, CA, August 2009.Google Scholar
  14. 14.
    Tanner, F.X., S. Srinivasan, T.O. Althaus, K.A. Feigl, and E.J. Windhab. Modeling and validation of the crystallization process in food sprays. In Proceedings of the Eleventh Triennial International Conference on Liquid Atomization & Spray Systems, Vail, CO, July 2009. CD-ROM Publication.Google Scholar
  15. 15.
    Windhab, E.J. New developments in crystallization processing. Thermal Analysis and Calorimetry, 57:171–180, 1999.CrossRefGoogle Scholar

Copyright information

© Springer US 2011

Authors and Affiliations

  1. 1.Department of Mathematical SciencesMichigan Technological UniversityHoughtonUSA

Personalised recommendations